Sous-espace vectoriel engendréDans un espace vectoriel E, le sous-espace vectoriel engendré par une partie A de E est le plus petit sous-espace vectoriel de E contenant A. C'est aussi l'ensemble des combinaisons linéaires de vecteurs de A. Le sous-espace vectoriel engendré par une famille de vecteurs est le plus petit sous-espace contenant tous les vecteurs de cette famille. Une famille de vecteurs ou une partie est dite génératrice de E si le sous-espace qu'elle engendre est l'espace entier E.
Lack-of-fit sum of squaresIn statistics, a sum of squares due to lack of fit, or more tersely a lack-of-fit sum of squares, is one of the components of a partition of the sum of squares of residuals in an analysis of variance, used in the numerator in an F-test of the null hypothesis that says that a proposed model fits well. The other component is the pure-error sum of squares. The pure-error sum of squares is the sum of squared deviations of each value of the dependent variable from the average value over all observations sharing its independent variable value(s).
Partition of sums of squaresThe partition of sums of squares is a concept that permeates much of inferential statistics and descriptive statistics. More properly, it is the partitioning of sums of squared deviations or errors. Mathematically, the sum of squared deviations is an unscaled, or unadjusted measure of dispersion (also called variability). When scaled for the number of degrees of freedom, it estimates the variance, or spread of the observations about their mean value.
Explained sum of squaresIn statistics, the explained sum of squares (ESS), alternatively known as the model sum of squares or sum of squares due to regression (SSR – not to be confused with the residual sum of squares (RSS) or sum of squares of errors), is a quantity used in describing how well a model, often a regression model, represents the data being modelled.
Algèbre linéairevignette|R3 est un espace vectoriel de dimension 3. Droites et plans qui passent par l'origine sont des sous-espaces vectoriels. L’algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires. L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.
Total sum of squaresIn statistical data analysis the total sum of squares (TSS or SST) is a quantity that appears as part of a standard way of presenting results of such analyses. For a set of observations, , it is defined as the sum over all squared differences between the observations and their overall mean .: For wide classes of linear models, the total sum of squares equals the explained sum of squares plus the residual sum of squares. For proof of this in the multivariate OLS case, see partitioning in the general OLS model.
Combinaison linéaireEn mathématiques, une combinaison linéaire est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en ajoutant le résultat. Par exemple, une combinaison linéaire de x et y serait une expression de la forme ax + by, où a et b sont des constantes. Le concept de combinaison linéaire est central en algèbre linéaire et dans des domaines connexes des mathématiques. La majeure partie de cet article traite des combinaisons linéaires dans le contexte d'espace vectoriel sur un corps commutatif, et indique quelques généralisations à la fin de l'article.
Invariant estimatorIn statistics, the concept of being an invariant estimator is a criterion that can be used to compare the properties of different estimators for the same quantity. It is a way of formalising the idea that an estimator should have certain intuitively appealing qualities. Strictly speaking, "invariant" would mean that the estimates themselves are unchanged when both the measurements and the parameters are transformed in a compatible way, but the meaning has been extended to allow the estimates to change in appropriate ways with such transformations.
Consistent estimatorIn statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter θ0—having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to θ0. This means that the distributions of the estimates become more and more concentrated near the true value of the parameter being estimated, so that the probability of the estimator being arbitrarily close to θ0 converges to one.