Inférence (logique)L’inférence est un mouvement de la pensée qui permet de passer d'une ou plusieurs assertions, des énoncés ou propositions affirmés comme vrais, appelés prémisses, à une nouvelle assertion qui en est la conclusion. Étymologiquement, le mot inférence signifie « reporter ». En théorie, l'inférence est traditionnellement divisée en déduction et induction, une distinction qui, en Europe, remonte au moins à Aristote ( avant Jésus-Christ). On distingue les inférences immédiates des inférences médiates telles que déductives, inductives et abductives.
Multilevel modelMultilevel models (also known as hierarchical linear models, linear mixed-effect model, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped.
Estimation of covariance matricesIn statistics, sometimes the covariance matrix of a multivariate random variable is not known but has to be estimated. Estimation of covariance matrices then deals with the question of how to approximate the actual covariance matrix on the basis of a sample from the multivariate distribution. Simple cases, where observations are complete, can be dealt with by using the sample covariance matrix.
Frequentist inferenceFrequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or proportion of findings in the data. Frequentist-inference underlies frequentist statistics, in which the well-established methodologies of statistical hypothesis testing and confidence intervals are founded. The primary formulation of frequentism stems from the presumption that statistics could be perceived to have been a probabilistic frequency.
Restauration (image)La restauration d'image est une technique d' qui permet, à l'aide d'un logiciel de retouche d'image, de rendre à une image numérisée l'apparence de son état d'origine. Pour ce faire, l'image est dans un premier temps importée dans l'ordinateur, généralement à l'aide d'un scanner, dans une , qui permet de travailler les détails. Ensuite, à l'aide d'un logiciel de comme Photoshop ou GIMP, l'infographiste dessine littéralement sur l'image, afin d'en supprimer les défauts.
Total variation denoisingIn signal processing, particularly , total variation denoising, also known as total variation regularization or total variation filtering, is a noise removal process (filter). It is based on the principle that signals with excessive and possibly spurious detail have high total variation, that is, the integral of the absolute is high. According to this principle, reducing the total variation of the signal—subject to it being a close match to the original signal—removes unwanted detail whilst preserving important details such as .
Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Analyse factorielleL'analyse factorielle est un terme qui désigne aujourd'hui plusieurs méthodes d'analyses de grands tableaux rectangulaires de données, visant à déterminer et à hiérarchiser des facteurs corrélés aux données placées en colonnes. Au sens anglo-saxon du terme, l'analyse factorielle (factor analysis) désigne une méthode de la famille de la statistique multivariée, utilisée pour décrire un ensemble de variables observées, au moyen de variables latentes (non observées).
FactorielleEn mathématiques, la factorielle d'un entier naturel n est le produit des nombres entiers strictement positifs inférieurs ou égaux à n. Cette opération est notée avec un point d'exclamation, n!, ce qui se lit soit « factorielle de n », soit « factorielle n », soit « n factorielle ». Cette notation a été introduite en 1808 par Christian Kramp. Par exemple, la factorielle 10 exprime le nombre de combinaisons possibles de placement des 10 convives autour d'une table (on dit la permutation des convives).