ArthroplastieReplacement arthroplasty (from Greek arthron, joint, limb, articulate, + plassein, to form, mould, forge, feign, make an image of), or joint replacement surgery, is a procedure of orthopedic surgery in which an arthritic or dysfunctional joint surface is replaced with an orthopedic prosthesis. Joint replacement is considered as a treatment when severe joint pain or dysfunction is not alleviated by less-invasive therapies. It is a form of arthroplasty, and is often indicated from various joint diseases, including osteoarthritis and rheumatoid arthritis.
Rotation en quatre dimensionsEn mathématiques, les rotations en quatre dimensions (souvent appelées simplement rotations 4D) sont des transformations de l'espace euclidien , généralisant la notion de rotation ordinaire dans l'espace usuel ; on les définit comme des isométries directes ayant un point fixe (qu'on peut prendre comme origine, identifiant les rotations aux rotations vectorielles) ; le groupe de ces rotations est noté SO(4) : il est en effet isomorphe au groupe spécial orthogonal d'ordre 4.
Hallux valgusL’hallux valgus (HV, du latin hallus, gros orteil et valgus : « tourné en dehors »), souvent accompagné d'un « oignon » (callosité de la peau en regard de la déformation), est une déformation du pied correspondant à la déviation du premier métatarsien en varus (en dedans) et du gros orteil (hallux) en valgus (en dehors). L'HV associe plusieurs déformations qui sont : un hallux abductus si M1P1 > 20° ; un metatarsus varus si M1M2 > 10° ; un metatarsus elevatus ; une pronation du gros orteil (pas toujours présente).
Axis–angle representationIn mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction (geometry) of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained.
Internal and external anglesIn geometry, an angle of a polygon is formed by two adjacent sides. For a simple (non-self-intersecting) polygon, regardless of whether it is convex or non-convex, this angle is called an (or interior angle) if a point within the angle is in the interior of the polygon. A polygon has exactly one internal angle per vertex. If every internal angle of a simple polygon is less than a straight angle (π radians or 180°), then the polygon is called convex.
Coordonnées polairesvignette|upright=1.4|En coordonnées polaires, la position du point M est définie par la distance r et l'angle θ. vignette|upright=1.4|Un cercle découpé en angles mesurés en degrés. Les coordonnées polaires sont, en mathématiques, un système de coordonnées curvilignes à deux dimensions, dans lequel chaque point du plan est entièrement déterminé par un angle et une distance. Ce système est particulièrement utile dans les situations où la relation entre deux points est plus facile à exprimer en termes d’angle et de distance, comme dans le cas du pendule.
Transverse planeThe transverse plane (also known as the horizontal plane, axial plane and transaxial plane) is an anatomical plane that divides the body into superior and inferior sections. It is perpendicular to the coronal and sagittal planes. Transverse thoracic plane Xiphosternal plane (or xiphosternal junction) Transpyloric plane Subcostal plane Umbilical plane (or transumbilical plane) Supracristal plane Intertubercular plane (or transtubercular plane) Interspinous plane The transverse thoracic plane Plane through T4 & T5 vertebral junction and sternal angle of Louis.
Quaternions et rotation dans l'espaceLes quaternions unitaires fournissent une notation mathématique commode pour représenter l'orientation et la rotation d'objets en trois dimensions. Comparés aux angles d'Euler, ils sont plus simples à composer et évitent le problème du blocage de cardan. Comparés aux matrices de rotations, ils sont plus stables numériquement et peuvent se révéler plus efficaces. Les quaternions ont été adoptés dans des applications en infographie, robotique, navigation, dynamique moléculaire et en mécanique spatiale des satellites.
Physique mathématiqueLa physique mathématique est un domaine de recherche commun à la physique et aux mathématiques s'intéressant au développement des méthodes mathématiques spécifiques aux problèmes physiques ou plus généralement à l'application des mathématiques à la physique, et, à l'opposé, aux développements mathématiques que suscitent certains domaines de recherche en physique. Elle inclut notamment l'étude des systèmes dynamiques, des algèbres aux symétries particulières, des méthodes de décomposition en séries et des méthodes de résolution d'équations différentielles.
Axes conventionsIn ballistics and flight dynamics, axes conventions are standardized ways of establishing the location and orientation of coordinate axes for use as a frame of reference. Mobile objects are normally tracked from an external frame considered fixed. Other frames can be defined on those mobile objects to deal with relative positions for other objects. Finally, attitudes or orientations can be described by a relationship between the external frame and the one defined over the mobile object.