Théorie de l'apprentissageLearning theory describes how students receive, process, and retain knowledge during learning. Cognitive, emotional, and environmental influences, as well as prior experience, all play a part in how understanding, or a worldview, is acquired or changed and knowledge and skills retained. Behaviorists look at learning as an aspect of conditioning and advocate a system of rewards and targets in education.
Mémoire (psychologie)thumb|350px|Les formes et fonctions de la mémoire en sciences. En psychologie, la mémoire est la faculté de l'esprit d'enregistrer, conserver et rappeler les expériences passées. Son investigation est réalisée par différentes disciplines : psychologie cognitive, neuropsychologie, et psychanalyse. thumb|Pyramide des cinq systèmes de mémoire. Le courant cognitiviste classique regroupe habituellement sous le terme de mémoire les processus dencodage, de stockage et de récupération des représentations mentales.
HyperplanEn mathématiques et plus particulièrement en algèbre linéaire et géométrie, les hyperplans d'un espace vectoriel E de dimension quelconque sont la généralisation des plans vectoriels d'un espace de dimension 3 : ce sont les sous-espaces vectoriels de codimension 1 dans E. Si E est de dimension finie n non nulle, ses hyperplans sont donc ses sous-espaces de dimension n – 1 : par exemple l'espace nul dans une droite vectorielle, une droite vectorielle dans un plan vectoriel Soient E un espace vectoriel et H un sous-espace.
Isometry groupIn mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element is the identity function. The elements of the isometry group are sometimes called motions of the space. Every isometry group of a metric space is a subgroup of isometries. It represents in most cases a possible set of symmetries of objects/figures in the space, or functions defined on the space.
Reflection groupIn group theory and geometry, a reflection group is a discrete group which is generated by a set of reflections of a finite-dimensional Euclidean space. The symmetry group of a regular polytope or of a tiling of the Euclidean space by congruent copies of a regular polytope is necessarily a reflection group. Reflection groups also include Weyl groups and crystallographic Coxeter groups. While the orthogonal group is generated by reflections (by the Cartan–Dieudonné theorem), it is a continuous group (indeed, Lie group), not a discrete group, and is generally considered separately.