Voisinage (théorie des graphes)En théorie des graphes on dit que deux sommets d'un graphe non-orienté sont voisins ou adjacents s'ils sont reliés par une arête. Le voisinage d'un sommet peut désigner l'ensemble de ses sommets voisins ou bien un sous-graphe associé, par exemple le sous-graphe induit. Dans un graphe orienté, on emploie généralement le terme de prédécesseur ou de successeur. Dans un graphe non orienté , le voisinage d'un sommet , souvent noté (N pour neighbourhood) peut désigner plusieurs choses : L'ensemble des sommets voisins : Les sous-graphe de induit par les sommets précédents, avec ou sans selon les versions.
Ordre totalEn mathématiques, on appelle relation d'ordre total sur un ensemble E toute relation d'ordre ≤ pour laquelle deux éléments de E sont toujours comparables, c'est-à-dire que On dit alors que E est totalement ordonné par ≤. Une relation binaire ≤ sur un ensemble E est un ordre total si (pour tous éléments x, y et z de E) : x ≤ x (réflexivité) ; si x ≤ y et y ≤ x, alors x = y (antisymétrie) ; si x ≤ y et y ≤ z, alors x ≤ z (transitivité) ; x ≤ y ou y ≤ x (totalité). Les trois premières propriétés sont celles faisant de ≤ une relation d'ordre.
Groupe ordonnéUn groupe ordonné est un groupe muni d'une relation d'ordre respectée par les translations. Soit (G,.) un groupe (la loi du groupe étant notée multiplicativement) et ≤ une relation d'ordre sur G. On dit que celle-ci est compatible avec la loi du groupe lorsque pour tous éléments x, y et z du groupe, la relation x ≤ y entraîne les deux relations zx ≤ zy et xz ≤ yz. Un groupe ordonné est un ensemble muni simultanément d'une loi de groupe et d'une relation d'ordre compatible.
Section commençanteEn mathématiques, et plus précisément en théorie des ordres, une section commençante (également appelée segment initial ou sous-ensemble fermé inférieurement) d'un ensemble ordonné (X,≤) est un sous-ensemble S de X tel que si x est dans S et si y ≤ x, alors y est dans S. Dualement, on appelle section finissante (ou sous-ensemble fermé supérieurement) un sous-ensemble F tel que si x est dans F et si x ≤ y, alors y est dans F.
Arbre (mathématiques)En mathématiques, un arbre est la donnée d'un ensemble E et d'une relation symétrique R sur E telle que deux points distincts quelconques x et y de E soient reliés par un seul chemin injectif fini, ie n+1 points z0,...,zn de E distincts vérifiant x=z0, ziRzi+1 pour i
AntichaîneEn mathématiques, plus précisément en théorie des ordres, une antichaîne est une partie d'un ensemble partiellement ordonné dont les éléments sont deux à deux incomparables. (Par opposition aux chaînes qui forment parties d'un ensemble dont les éléments sont toujours deux à deux comparables.) Dit autrement, soit E un ensemble muni d'une relation d'ordre ≤, un sous-ensemble A est une antichaîne de E si pour tout x,y de A, Une antichaîne est dite maximale si elle n'est incluse (strictement) dans aucune autre antichaîne.
SemiorderIn order theory, a branch of mathematics, a semiorder is a type of ordering for items with numerical scores, where items with widely differing scores are compared by their scores and where scores within a given margin of error are deemed incomparable. Semiorders were introduced and applied in mathematical psychology by as a model of human preference. They generalize strict weak orderings, in which items with equal scores may be tied but there is no margin of error.