Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Fonction génératrice des probabilitésEn mathématiques, et plus particulièrement en théorie des probabilités, la fonction génératrice des probabilités (ou fonction génératrice des moments factoriels) d'une variable aléatoire (à valeurs dans les entiers naturels) est la série entière associée à la fonction de masse de cette variable aléatoire. La fonction génératrice des probabilités est utile car elle permet de caractériser entièrement la fonction de masse. La fonction génératrice des probabilités est usuellement identifiée à sa somme.
Loi de probabilité marginaleEn théorie des probabilités et en statistique, la loi marginale d'un vecteur aléatoire, c'est-à-dire d'une variable aléatoire à plusieurs dimensions, est la loi de probabilité d'une de ses composantes. Autrement dit, la loi marginale est une variable aléatoire obtenue par « projection » d'un vecteur contenant cette variable. Par exemple, pour un vecteur aléatoire , la loi de la variable aléatoire est la deuxième loi marginale du vecteur. Pour obtenir la loi marginale d'un vecteur, on projette la loi sur l'espace unidimensionnel de la coordonnée recherchée.
FermionEn physique des particules, un fermion (nom attribué par Paul Dirac d'après Enrico Fermi) est une particule de spin demi-entier (c'est-à-dire 1/2, 3/2, 5/2...). Elle obéit à la statistique de Fermi-Dirac. Un fermion peut être une particule élémentaire, tel l'électron, ou une particule composite, tel le proton, ou toutes leurs antiparticules. Toutes les particules élémentaires observées sont soit des fermions, soit des bosons (l'hypothétique matière noire, encore non observée en , n'est actuellement pas catégorisée).
Matrice de HankelEn algèbre linéaire, une matrice de Hankel, du nom du mathématicien Hermann Hankel, est une matrice carrée dont les valeurs sont constantes le long des diagonales ascendantes, c'est-à-dire dont les indices vérifient la relation Par exemple une matrice de Hankel de taille 5 s'écrit sous la forme Les matrices de Toeplitz ont, elles, des valeurs constantes sur les diagonales descendantes. Sur un espace de Hilbert muni d'une base hilbertienne, on peut définir plus généralement un opérateur de Hankel.
Fluctuation quantiqueEn physique quantique, une fluctuation quantique, ou fluctuation quantique du vide, est le changement temporaire du niveau d'énergie à un certain point de l'espace, expliqué par le principe d'incertitude de Heisenberg qui permet la création spontanée d'une paire virtuelle constituée d'une particule et d'une antiparticule. Pour comprendre ce phénomène, il faut comprendre la nature du vide spatial conformément à la théorie des champs quantiques. Le vide est rempli d’ondes électromagnétiques fluctuantes.
Cumulant (statistiques)En mathématiques et plus particulièrement en théorie des probabilités et en statistique, les cumulants d'une loi de probabilité sont des coefficients qui ont un rôle similaire à celui des moments. Les cumulants déterminent entièrement les moments et vice versa, c'est-à-dire que deux lois ont les mêmes cumulants si et seulement si elles ont les mêmes moments. L'espérance constitue le premier cumulant, la variance le deuxième et le troisième moment centré constitue le troisième cumulant.
Conjecture de Pólyathumb|right|Fonction sommatoire de la fonction de Liouville L(n) jusqu'à n = . thumb|right|Gros plan sur la fonction sommatoire de la fonction de Liouville L(n) dans la région où la conjecture de Pólya est en défaut. En théorie des nombres, la conjecture de Pólya énonce que la plupart (c'est-à-dire plus de la moitié) des entiers naturels inférieurs à un entier donné ont un nombre impair de facteurs premiers. La conjecture a été proposée par le mathématicien hongrois George Pólya en 1919.
Segment (mathématiques)vignette|Le segment . En géométrie, un segment de droite (souvent abrégé en « segment ») est une portion de droite délimitée par deux points, appelés extrémités du segment. Un segment reliant deux points et est noté ou et représente la partie de la droite qui se situe « entre » les points et . Intuitivement, un segment correspond à un fil tendu entre deux points, en négligeant l’épaisseur du fil et la déformation due à son poids.
Fonction thêtaEn mathématiques, on appelle fonctions thêta certaines fonctions spéciales d'une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l'étude des variétés abéliennes, des espaces de modules, et les formes quadratiques. Elles ont aussi des applications à la théorie des solitons. Leurs généralisations en algèbre extérieure apparaissent dans la théorie quantique des champs, plus précisément dans la théorie des cordes et des D-branes.