En mathématiques et plus particulièrement en théorie des probabilités et en statistique, les cumulants d'une loi de probabilité sont des coefficients qui ont un rôle similaire à celui des moments. Les cumulants déterminent entièrement les moments et vice versa, c'est-à-dire que deux lois ont les mêmes cumulants si et seulement si elles ont les mêmes moments. L'espérance constitue le premier cumulant, la variance le deuxième et le troisième moment centré constitue le troisième cumulant. En revanche les cumulants d'ordres 4 ou plus ne correspondent plus aux moments centrés. L'utilisation des cumulants peut s'avérer utile car ils vérifient notamment la propriété suivante : le n-ième cumulant d'une somme de variables indépendantes est égal à la somme des n-ièmes cumulants de chaque variable de la somme. Une loi avec des cumulants κn donnés peut être approchée par un développement d'Edgeworth. Soit X une variable aléatoire à valeurs réelles. On définit d'abord la fonction génératrice des cumulants KX associée à X : Les cumulants κn sont alors définis comme les coefficients dans le développement de KX en série exponentielle : Si on note μ = E(X) l'espérance de X et σ2 = E((X − μ)2) sa variance alors on a en particulier que μ = κ1 et σ2 = κ2. Les cumulants sont donnés par les dérivées en 0 de KX : La fonction génératrice des cumulants est intimement liée à la fonction génératrice des moments de la variable X. Travailler avec la fonction génératrice des cumulants est parfois plus pratique dans la mesure où pour des variables indépendantes X et Y : Tandis qu'avec la fonction génératrice des moments on obtient : On remarquera que Certains auteurs préfèrent définir la fonction génératrice des cumulants plutôt comme le logarithme népérien de la fonction caractéristique. La fonction génératrice des cumulants prend alors parfois le nom de seconde fonction caractéristique. Un avantage apparent à utiliser H(t) — soit évaluer K(t) pour une valeur imaginaire pure — est que E[eitX] est bien défini pour tout t réel alors que ce n'est pas toujours le cas de E[etX], comme dans les cas où la probabilité est élevée que X ait de grandes valeurs.
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer
Kathryn Hess Bellwald, Lida Kanari, Adélie Eliane Garin