Espace-temps (structure algébrique)En physique mathématique, lespace-temps peut-être modélisé par une structure d'algèbre géométrique satisfaisant la géométrie décrite par la relativité restreinte. On parle alors dalgèbre d'espace-temps ou algèbre spatio-temporelle (Space-time algebra en anglais). L'espace-temps contient alors des vecteurs, bivecteurs et autres multivecteurs qui peuvent être combinés les uns aux autres ainsi que transformés selon les transformations de Lorentz ou autres transformations possibles dans une algèbre géométrique (notamment les réflexions).
Particule de DiracOn appelle particule de Dirac toute particule de type fermion dont l'antiparticule est différente. C'est le cas de toute particule chargée (un électron et son positron par exemple). Elles sont nommées ainsi en raison de la mise en évidence par Paul Dirac en 1928 de l'existence du positron. D'autres particules de charge nulle (telles les neutrinos) seraient en revanche susceptibles d'être leur propre antiparticule : il s'agirait alors de particules dites de Majorana, dont l'existence n'a toujours pas été confirmée à mi-2016.
Théorème de GreenEn mathématiques, le théorème de Green, ou théorème de Green-Riemann, donne la relation entre une intégrale curviligne le long d'une courbe simple fermée orientée C par morceaux et l'intégrale double sur la région du plan délimitée par cette courbe. Ce théorème, nommé d'après George Green et Bernhard Riemann, est un cas particulier du théorème de Stokes. thumb|upright=0.9|Domaine délimité par une courbe régulière par morceaux. Vu comme cas particulier du théorème de Stokes, le théorème s'écrit sous la forme suivante, en notant ∂D la courbe C et ω la forme différentielle.
Aix-en-ProvenceAix-en-Provence (en provençal : Ais) est la capitale historique de la Provence. C'est aujourd'hui une commune française du Sud-Est de la France, dans le département des Bouches-du-Rhône, dont elle est sous-préfecture, en région Provence-Alpes-Côte d'Azur. Elle forme avec le pays d'Aix au sein de la Métropole Aix-Marseille Provence. Les habitants d'Aix s'appellent les Aixois en français (en provençal : lei sestian). Fondée en sous le nom d'Aquae Sextiae par la garnison romaine de Caius Sextius Calvinus, Aix devient par la suite la capitale du comté de Provence.
Matrice de DiracLes matrices de Dirac sont des matrices qui furent introduites par Paul Dirac, lors de la recherche d'une équation d'onde relativiste de l'électron. Le pendant relativiste de l'équation de Schrödinger est l'équation de Klein-Gordon. Celle-ci décrit des particules de spin 0 et ne convient pas pour les électrons qui sont de spin 1/2. Dirac essaya alors de trouver une équation linéaire comme celle de Schrödinger sous la forme : où est une fonction d'onde vectorielle, la masse de la particule, l'hamiltonien, sont respectivement un vecteur de matrices hermitiques et une matrice hermitique, et i désigne l'unité imaginaire.
Lie algebra extensionIn the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension e is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
Représentation d'algèbre de LieEn mathématiques, une représentation d'une algèbre de Lie est une façon d'écrire cette algèbre comme une algèbre de matrices, ou plus généralement d'endomorphismes d'un espace vectoriel, avec le crochet de Lie donné par le commutateur. Algèbre de Lie Soit K un corps commutatif de caractéristique différente de 2. Une algèbre de Lie sur K est un espace vectoriel muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Tout espace vectoriel peut être muni d'une structure d'algèbre de Lie, en posant .
Superalgèbre de LieUne superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une Z-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions.
Forces spécialesvignette|Les spetsnaz sont une force spéciale des forces armées russes Les forces spéciales (FS) sont, selon la définition de l'OTAN, les unités militaires spécifiquement formées, instruites et entraînées pour mener un éventail de missions particulières, allant des « » dans le cadre d’un conflit classique à celles relevant de la guerre non conventionnelle. Leurs missions, lorsque conduites à proximité de forces conventionnelles alliées, peuvent ressembler à celles des commandos de type GCP, mais ces derniers ne pratiquent pas ou peu de guerre non-conventionnelle.
Algebra of physical spaceIn physics, the algebra of physical space (APS) is the use of the Clifford or geometric algebra Cl3,0(R) of the three-dimensional Euclidean space as a model for (3+1)-dimensional spacetime, representing a point in spacetime via a paravector (3-dimensional vector plus a 1-dimensional scalar). The Clifford algebra Cl3,0(R) has a faithful representation, generated by Pauli matrices, on the spin representation C2; further, Cl3,0(R) is isomorphic to the even subalgebra Cl(R) of the Clifford algebra Cl3,1(R).