Régularité par morceauxEn mathématiques, les énoncés de certaines propriétés d'analyse et résultats de convergence se réfèrent à des fonctions vérifiant des hypothèses telles que continues par morceaux, dérivables par morceaux Ces fonctions sont regroupées par classes de régularité qui sont autant d'espaces vectoriels emboîtés, appelés « classe C par morceaux » et notés C. vignette|Cette fonction n'est pas continue sur R. En revanche, elle y est continue par morceaux. Une fonction f est continue par morceaux sur le segment [a, b] s’il existe une subdivision σ : a = a0 < .
Événement (probabilités)vignette|Jeu de dés : une expérience aléatoire. En théorie des probabilités, un événement lié à une expérience aléatoire est un sous-ensemble des résultats possibles pour cette expérience (c'est-à-dire un certain sous-ensemble de l'univers lié à l'expérience). Un événement étant souvent défini par une proposition, nous devons pouvoir dire, connaissant le résultat de l'expérience aléatoire, si l'événement a été réalisé ou non au cours de cette expérience. Par exemple, considérons l'expérience aléatoire consistant à lancer un dé à 6 faces.
Sum of normally distributed random variablesIn probability theory, calculation of the sum of normally distributed random variables is an instance of the arithmetic of random variables. This is not to be confused with the sum of normal distributions which forms a mixture distribution. Let X and Y be independent random variables that are normally distributed (and therefore also jointly so), then their sum is also normally distributed. i.e., if then This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.
One-way wave equationA one-way wave equation is a first-order partial differential equation describing one wave traveling in a direction defined by the vector wave velocity. It contrasts with the second-order two-way wave equation describing a standing wavefield resulting from superposition of two waves in opposite directions. In the one-dimensional case, the one-way wave equation allows wave propagation to be calculated without the mathematical complication of solving a 2nd order differential equation.
Formule de Gauss-Bonnetvignette|Exemple d'une surface à laquelle le théorème de Gauss-Bonnet peut être appliqué En géométrie différentielle, la formule de Gauss-Bonnet est une propriété reliant la géométrie (au sens de la courbure de Gauss) et la topologie (au sens de la caractéristique d'Euler) des surfaces. Elle porte le nom des mathématiciens Carl Friedrich Gauss, qui avait conscience d'une version du théorème, mais ne la publia jamais, et Pierre Ossian Bonnet, qui en publia un cas particulier en 1848.
Difference quotientIn single-variable calculus, the difference quotient is usually the name for the expression which when taken to the limit as h approaches 0 gives the derivative of the function f. The name of the expression stems from the fact that it is the quotient of the difference of values of the function by the difference of the corresponding values of its argument (the latter is (x + h) - x = h in this case). The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h).
Carl Friedrich GaussJohann Carl Friedrich Gauß ( ; traditionnellement transcrit Gauss en français ; Carolus Fridericus Gauss en latin), né le à Brunswick et mort le à Göttingen, est un mathématicien, astronome et physicien allemand. Il a apporté de très importantes contributions à ces trois domaines. Surnommé « le prince des mathématiciens », il est considéré comme l'un des plus grands mathématiciens de tous les temps. La qualité extraordinaire de ses travaux scientifiques était déjà reconnue par ses contemporains.