Discretization errorIn numerical analysis, computational physics, and simulation, discretization error is the error resulting from the fact that a function of a continuous variable is represented in the computer by a finite number of evaluations, for example, on a lattice. Discretization error can usually be reduced by using a more finely spaced lattice, with an increased computational cost. Discretization error is the principal source of error in methods of finite differences and the pseudo-spectral method of computational physics.
Théorie du contrôleEn mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .
DiscrétisationEn mathématiques appliquées, la discrétisation est la transposition d'un état (fonction, modèle, variable, équation) en un équivalent . Ce procédé constitue en général une étape préliminaire à la résolution numérique d'un problème ou sa programmation sur machine. Un cas particulier est la dichotomisation où le nombre de classes discrètes est 2, où on peut approcher une variable continue en une variable binaire. La discrétisation est aussi reliée aux mathématiques discrètes, et compte parmi les composantes importantes de la programmation granulaire.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Erreur d'arrondiUne erreur d'arrondi est la différence entre la valeur approchée calculée d'un nombre et sa valeur mathématique exacte. Des erreurs d'arrondi naissent généralement lorsque des nombres exacts sont représentés dans un système incapable de les exprimer exactement. Les erreurs d'arrondi se propagent au cours des calculs avec des valeurs approchées ce qui peut augmenter l'erreur du résultat final. Dans le système décimal des erreurs d'arrondi sont engendrées, lorsqu'avec une troncature, un grand nombre (peut-être une infinité) de décimales ne sont pas prises en considération.
Fluid solutionIn general relativity, a fluid solution is an exact solution of the Einstein field equation in which the gravitational field is produced entirely by the mass, momentum, and stress density of a fluid. In astrophysics, fluid solutions are often employed as stellar models. (It might help to think of a perfect gas as a special case of a perfect fluid.) In cosmology, fluid solutions are often used as cosmological models.
Error correction codeIn computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors.
Bellman equationA Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. It writes the "value" of a decision problem at a certain point in time in terms of the payoff from some initial choices and the "value" of the remaining decision problem that results from those initial choices. This breaks a dynamic optimization problem into a sequence of simpler subproblems, as Bellman's “principle of optimality" prescribes.
Équation de la chaleurEn mathématiques et en physique théorique, l'équation de la chaleur est une équation aux dérivées partielles parabolique, pour décrire le phénomène physique de conduction thermique, introduite initialement en 1807 par Joseph Fourier, après des expériences sur la propagation de la chaleur, suivies par la modélisation de l'évolution de la température avec des séries trigonométriques, appelés depuis séries de Fourier et transformées de Fourier, permettant une grande amélioration à la modélisation mathématique
AutomatiqueL’automatique est une science qui traite de la modélisation, de l’analyse, de l’identification et de la commande des systèmes dynamiques. Elle inclut la cybernétique au sens étymologique du terme, et a pour fondements théoriques les mathématiques, la théorie du signal et l’informatique théorique. L’automatique permet de commander un système en respectant un cahier des charges (rapidité, précision, stabilité...). Les professionnels en automatique se nomment automaticiens.