Groupe symétriqueEn mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même. N'est traité dans le présent article, à la suite de la définition générale, que le cas E fini. Soit E un ensemble. On appelle groupe symétrique de E l'ensemble des applications bijectives de E sur E muni de la composition d'applications (la loi ∘). On le note S(E) ou (ce caractère est un S gothique). Un cas particulier courant est le cas où E est l'ensemble fini {1, 2, .
Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
Renouvellement urbainLe renouvellement urbain ou renouvèlement urbain est, en urbanisme, une forme d'évolution de la ville qui désigne l'action de reconstruction de la ville sur elle-même et de recyclage de ses ressources bâties et foncières. Celle-ci vise en particulier à traiter les problèmes sociaux, économiques, urbanistiques, architecturaux de certains quartiers anciens ou dégradés, ainsi qu’à susciter de nouvelles évolutions de développement notamment économiques, et à développer les solidarités à l'échelle de l'agglomération (meilleure répartition des populations défavorisées, au travers de l’habitat social notamment).
Robust measures of scaleIn statistics, robust measures of scale are methods that quantify the statistical dispersion in a sample of numerical data while resisting outliers. The most common such robust statistics are the interquartile range (IQR) and the median absolute deviation (MAD). These are contrasted with conventional or non-robust measures of scale, such as sample standard deviation, which are greatly influenced by outliers.
Algèbre symétriqueEn mathématiques, l'algèbre symétrique est une algèbre sur un corps associative, commutative et unifère utilisée pour définir des polynômes sur un espace vectoriel. L'algèbre symétrique est un outil important dans la théorie des algèbres de Lie et en topologie algébrique dans la théorie des classes caractéristiques. Soit E un espace vectoriel, l'algèbre symétrique de E, notée, S (E) ou Sym (E) est l'algèbre quotient de l'algèbre tensorielle T (E) par l'idéal bilatère I (E) engendré par les éléments où u et v sont des éléments de E.
Groupe abélien de type finiEn mathématiques, un groupe abélien de type fini est un groupe abélien qui possède une partie génératrice finie. Autrement dit : c'est un module de type fini sur l'anneau Z des entiers relatifs. Par conséquent, les produits finis, les quotients, mais aussi les sous-groupes des groupes abéliens de type fini sont eux-mêmes de type fini. Un théorème de structure des groupes abéliens de type fini permet d'expliciter la liste complète de ces groupes à isomorphisme près ; il montre notamment que tout groupe abélien de type fini est un produit fini de groupes monogènes.
Finitely generated groupIn algebra, a finitely generated group is a group G that has some finite generating set S so that every element of G can be written as the combination (under the group operation) of finitely many elements of S and of inverses of such elements. By definition, every finite group is finitely generated, since S can be taken to be G itself. Every infinite finitely generated group must be countable but countable groups need not be finitely generated. The additive group of rational numbers Q is an example of a countable group that is not finitely generated.
Image binaireParmi les , et en particulier, les , les images binaires sont les plus simples. Bichromes (la plupart du temps noire et blanche) elles sont ontologiquement numériques c'est-à-dire que leur codage et leur décodage peuvent être faits directement vers la base 2. Il existe deux images binaires pour représenter un point au centre d'une matrice de neuf éléments (il peut s'agir très simplement d'ampoules allumées ou éteintes) : 000 010 000 codage : 0, 2, 0 111 101 111 codage : 7, 5, 7 Niveau de gris Tramage (ou d
RastérisationLa rastérisation, ou matricialisation, est un procédé qui consiste à convertir une en une destinée à être affichée sur un écran ou imprimée par un matériel d'impression. Les scènes en étant généralement stockées en mémoire sous forme vectorielle, ce terme s'applique également pour leur rendu à l'écran (l'écran fournissant une image matricielle), c'est d'ailleurs la principale utilisation du mot « rastérisation ». Par extension, on englobe aussi dans la rastérisation tous les procédés permettant d'améliorer l'aspect final du rendu 3D.
Partie génératrice d'un groupeEn théorie des groupes, une partie génératrice d'un groupe est une partie A de ce groupe telle que tout élément du groupe s'écrit comme produit d'un nombre fini d'éléments de A et de leurs inverses. Un groupe est dit de type fini lorsqu'il admet une partie génératrice finie. Un groupe engendré par un seul élément est isomorphe soit au groupe additif des entiers relatifs (Z, +), soit à un groupe additif de classes modulo n (Z/nZ, +) ; on dit que c'est un groupe monogène.