En mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même. N'est traité dans le présent article, à la suite de la définition générale, que le cas E fini.
Soit E un ensemble. On appelle groupe symétrique de E l'ensemble des applications bijectives de E sur E muni de la composition d'applications (la loi ∘). On le note S(E) ou (ce caractère est un S gothique).
Un cas particulier courant est le cas où E est l'ensemble fini {1, 2, ... , n}, n étant un entier naturel ; on note alors ou S le groupe symétrique de cet ensemble. Les éléments de sont appelés permutations et est appelé groupe des permutations de degré n ou groupe symétrique d'indice n (un sous-groupe du groupe symétrique est appelé un groupe de permutations).
Si deux ensembles sont équipotents alors leurs groupes symétriques sont isomorphes. En effet, si f est une bijection de E dans F, alors l'application de S(E) dans S(F) qui à σ associe f∘σ∘f est un isomorphisme. En particulier si E est un ensemble fini à n éléments, alors est isomorphe à . En conséquence, il suffit de connaître les propriétés du groupe pour en déduire celles du groupe . C'est pourquoi la suite de cet article ne portera que sur .
vignette|Triangle équilatéral et ses médianes
Les six isométries du groupe de symétrie d'un triangle équilatéral ABC sont les trois symétries par rapport aux médianes , et issues de respectivement les sommets A, B et C, deux rotations d'un tiers de tour dans le sens horaire ou anti-horaire et l'application identité. Elles se restreignent en six permutations des trois sommets, constituant le groupe S({A, B, C}) :
id, x = (B C), y = (A C), z = (A B), r = (A B C) et r = (C B A).
La table de Cayley de ce groupe est :
Historiquement, l'étude du groupe des permutations des racines d'un polynôme par Évariste Galois est à l'origine du concept de groupe.
Un théorème de Cayley assure que tout groupe est isomorphe à un sous-groupe d'un groupe symétrique.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course provides a rigorous introduction to the ideas, methods and results of classical statistical mechanics, with an emphasis on presenting the central tools for the probabilistic description of
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Explore la séparation d'énergie non-perturbative dans des potentiels symétriques en utilisant les points de selle et la fonction de séparation torsadée.
En mathématiques, le groupe diédral d'ordre 2n, pour un nombre naturel non nul n, est un groupe qui s'interprète notamment comme le groupe des isométries du plan conservant un polygone régulier à n côtés. Le groupe est constitué de n éléments correspondant aux rotations et n autres correspondant aux réflexions. Il est noté Dn par certains auteurs et D par d'autres. On utilisera ici la notation D. Le groupe D est le groupe cyclique d'ordre 2, noté C ; le groupe D est le groupe de Klein à quatre éléments.
En théorie des groupes (mathématiques), un groupe de permutations d'un ensemble X est par définition un sous-groupe du groupe symétrique SX. On parle d'un groupe de permutations de X ou, s'il n'est pas nécessaire de préciser l'ensemble X, d'un groupe de permutations. Pour un ensemble X, nous désignerons ici par SX et nous appellerons groupe symétrique de X l'ensemble des permutations de X, muni de la loi de groupe ∘ définie par f ∘ g : X → X, x ↦ f(g(x)). Cette définition convient à l'étude des actions à gauche d'un groupe sur un ensemble.
En théorie des groupes, on appelle centre d'un groupe G l'ensemble des éléments de G qui commutent avec tous les autres. Soit G un groupe, noté multiplicativement. Son centre Z est Dans G, Z est un sous-groupe normal — comme noyau du morphisme de groupes ι ci-dessous — et même un sous-groupe caractéristique. Tout sous-groupe de Z est sous-groupe normal de G. Z est abélien. Le centre d'un groupe abélien G est le groupe G entier, c'est-à-dire : Z = G. Le centre du groupe alterné A est trivial pour n ≥ 4.
In this paper we consider two aspects of the inverse problem of how to construct merge trees realizing a given barcode. Much of our investigation exploits a recently discovered connection between the symmetric group and barcodes in general position, based ...
Ulam asked whether all Lie groups can be represented faithfully on a countable set. We establish a reduction of Ulam's problem to the case of simple Lie groups. In particular, we solve the problem for all solvable Lie groups and more generally Lie groups w ...
San Diego2023
,
Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V ), where H is a proper connected subgroup of G, and V is a finitedimensional ir ...