In algebra, a finitely generated group is a group G that has some finite generating set S so that every element of G can be written as the combination (under the group operation) of finitely many elements of S and of inverses of such elements. By definition, every finite group is finitely generated, since S can be taken to be G itself. Every infinite finitely generated group must be countable but countable groups need not be finitely generated. The additive group of rational numbers Q is an example of a countable group that is not finitely generated. Every quotient of a finitely generated group G is finitely generated; the quotient group is generated by the images of the generators of G under the canonical projection. A group that is generated by a single element is called cyclic. Every infinite cyclic group is isomorphic to the additive group of the integers Z. A locally cyclic group is a group in which every finitely generated subgroup is cyclic. The free group on a finite set is finitely generated by the elements of that set (§Examples). A fortiori, every finitely presented group (§Examples) is finitely generated. Finitely generated abelian group Every abelian group can be seen as a module over the ring of integers Z, and in a finitely generated abelian group with generators x1, ..., xn, every group element x can be written as a linear combination of these generators, x = α1⋅x1 + α2⋅x2 + ... + αn⋅xn with integers α1, ..., αn. Subgroups of a finitely generated abelian group are themselves finitely generated. The fundamental theorem of finitely generated abelian groups states that a finitely generated abelian group is the direct sum of a free abelian group of finite rank and a finite abelian group, each of which are unique up to isomorphism. A subgroup of a finitely generated group need not be finitely generated. The commutator subgroup of the free group on two generators is an example of a subgroup of a finitely generated group that is not finitely generated. On the other hand, all subgroups of a finitely generated abelian group are finitely generated.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (17)
Torsion (algèbre)
En algèbre, dans un groupe, un élément est dit de torsion s'il est d'ordre fini, c'est-à-dire si l'une de ses puissances non nulle est l'élément neutre. La torsion d'un groupe est l'ensemble de ses éléments de torsion. Un groupe est dit sans torsion si sa torsion ne contient que le neutre, c'est-à-dire si tout élément différent du neutre est d'ordre infini. Si le groupe est abélien, sa torsion est un sous-groupe. Par exemple, le sous-groupe de torsion du groupe abélien est .
Géométrie
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Torsion subgroup
In the theory of abelian groups, the torsion subgroup AT of an abelian group A is the subgroup of A consisting of all elements that have finite order (the torsion elements of A). An abelian group A is called a torsion group (or periodic group) if every element of A has finite order and is called torsion-free if every element of A except the identity is of infinite order. The proof that AT is closed under the group operation relies on the commutativity of the operation (see examples section).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.