Polynôme unitaireEn algèbre commutative, un polynôme unitaire, ou polynôme monique, est un polynôme non nul dont le coefficient dominant (le coefficient du terme de plus haut degré) est égal à 1. Un polynôme P est donc unitaire si et seulement s'il s'écrit sous la forme Sur les polynômes unitaires à coefficients dans un anneau commutatif A donné, la relation divise est une relation d'ordre partiel. Si A est un corps, alors tout polynôme non nul est associé à un polynôme unitaire et un seul.
Coefficient binomialEn mathématiques, les coefficients binomiaux, ou coefficients du binôme, définis pour tout entier naturel n et tout entier naturel k inférieur ou égal à n, donnent le nombre de parties à k éléments d'un ensemble à n éléments. On les note - qui se lit « k parmi n » - ou , la lettre C étant l'initiale du mot « combinaison » Les coefficients binomiaux s'expriment à l'aide de la fonction factorielle : Ils interviennent dans de nombreux domaines des mathématiques : développement du binôme en algèbre, dénombrements, développement en série, lois de probabilités, etc.
Polynôme cyclotomiqueEn mathématiques, plus précisément en algèbre commutative, le polynôme cyclotomique usuel associé à un entier naturel n est le polynôme unitaire dont les racines complexes sont les racines primitives n-ièmes de l'unité. Son degré vaut φ(n), où φ désigne la fonction indicatrice d'Euler. Il est à coefficients entiers et irréductible sur Q.
Division d'un polynômeEn algèbre, l'anneau K[X] des polynômes à une indéterminée X et à coefficients dans un corps commutatif K, comme celui des nombres rationnels, réels ou complexes, dispose d'une division euclidienne, qui ressemble formellement à celle des nombres entiers. Si A et B sont deux polynômes de K[X], avec B non nul, il existe un unique couple (Q, R) de polynômes de K[X] tel que : Ici l'expression deg S, si S désigne un polynôme, signifie le degré de S.
Simulation informatiquevignette|upright=1|Une simulation informatique, sur une étendue de , de l'évolution du typhon Mawar produite par le Modèle météorologique Weather Research and Forecasting La simulation informatique ou numérique est l'exécution d'un programme informatique sur un ordinateur ou réseau en vue de simuler un phénomène physique réel et complexe (par exemple : chute d’un corps sur un support mou, résistance d’une plateforme pétrolière à la houle, fatigue d’un matériau sous sollicitation vibratoire, usure d’un roulem
Polynôme homogèneEn mathématiques, un polynôme homogène, ou forme algébrique, est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total. Par exemple le polynôme x + 2xy + 9xy est homogène de degré 5 car la somme des exposants est 5 pour chacun des monômes ; les polynômes homogènes de degré 2 sont les formes quadratiques. Les polynômes homogènes sont omniprésents en mathématiques et en physique théorique. Soit K un corps commutatif. Un polynôme homogène de degré d en n variables est un polynôme dans K[X, .
Méthode de BartlettEn estimation spectrale, la méthode de Bartlett fournit un estimateur consistant de la densité spectrale de puissance. En pratique, obtenir un signal sur une durée infinie et l'acquérir sans bruit est impossible. C'est pourquoi on peut utiliser la fenêtre de Bartlett dans le but de lisser un périodogramme. Cette méthode est utilisée en physique, en ingénierie ainsi qu'en mathématiques appliquées. Les applications courantes de cette méthode sont l'analyse en réponse fréquentielle ainsi que l'analyse spectrale générale.
Polynôme de BernsteinLes polynômes de Bernstein, nommés ainsi en l'honneur du mathématicien russe Sergueï Bernstein (1880-1968), permettent de donner une démonstration constructive et probabilistedu théorème d'approximation de Weierstrass. Ils sont également utilisés dans la formulation générale des courbes de Bézier. Pour un degré m ≥ 0, il y a m + 1 polynômes de Bernstein B, ..., B définis, sur l'intervalle [0 ; 1], par où les sont les coefficients binomiaux. Les m + 1 polynômes de Bernstein forment une base de l'espace vectoriel des polynômes de degré au plus m.
Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Vecteur contravariant, covariant et covecteurUn vecteur contravariant est un vecteur, un vecteur covariant est une forme linéaire, encore appelé covecteur, ou encore vecteur dual. Et si on dispose d'un produit scalaire, on peut représenter une forme linéaire (= un vecteur covariant = un covecteur) par un vecteur à l'aide du théorème de représentation de Riesz (cette représentation dépend du choix du produit scalaire).