Imagerie hyperspectralevignette|Projection bi-dimensionnelle d'une image hyperspectrale d'une région de la Terre prise depuis l'espace. vignette|Image hyperspectrale de plusieurs pierres permettant d'identifier les éléments qui les composent. vignette|L'imagerie hyperspectrale comparée à l'imagerie spectrale. vignette|Les différentes techniques d'acquisition d'une image hyperspectrale. L'imagerie hyperspectrale ou spectro-imagerie est une technologie permettant d'obtenir l'image d'une scène dans un grand nombre (généralement plus d'une centaine) de bandes spectrales à la fois étroites et contigües.
Caméra multispectraleUne caméra multispectrale est une caméra qui enregistre en une seule prise de vue plusieurs longueurs d'onde qui sont isolées en vue d'analyses spécifiques et de techniques de recombination. Ceci permet une analyse des détails beaucoup plus fine et la visualisation de détails non visibles à l'œil nu. En , cette technique est appliquée pour la première fois à La Joconde et donne lieu à la mise en évidence de détails inconnus ou connus seulement par les historiens de l'art. Ces travaux sont publiés en 2007.
Spectral imagingSpectral imaging is imaging that uses multiple bands across the electromagnetic spectrum. While an ordinary camera captures light across three wavelength bands in the visible spectrum, red, green, and blue (RGB), spectral imaging encompasses a wide variety of techniques that go beyond RGB. Spectral imaging may use the infrared, the visible spectrum, the ultraviolet, x-rays, or some combination of the above.
Imaging spectroscopyIn imaging spectroscopy (also hyperspectral imaging or spectral imaging) each pixel of an image acquires many bands of light intensity data from the spectrum, instead of just the three bands of the RGB color model. More precisely, it is the simultaneous acquisition of spatially in many spectrally contiguous bands. Some spectral images contain only a few s of a spectral data cube, while others are better thought of as full spectra at every location in the image.
Combinaison linéaireEn mathématiques, une combinaison linéaire est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en ajoutant le résultat. Par exemple, une combinaison linéaire de x et y serait une expression de la forme ax + by, où a et b sont des constantes. Le concept de combinaison linéaire est central en algèbre linéaire et dans des domaines connexes des mathématiques. La majeure partie de cet article traite des combinaisons linéaires dans le contexte d'espace vectoriel sur un corps commutatif, et indique quelques généralisations à la fin de l'article.
Repliement de spectrethumb|300px|Ce graphique démontre le repliement du spectre d'un signal sinusoïdal de fréquence f = 0,9, confondu avec un signal de fréquence f = 0,1 lors d'un échantillonnage de période T = 1,0. Le repliement de spectre (aliasing en anglais) est un phénomène qui introduit, dans un signal qui module une fréquence porteuse ou dans un signal échantillonné, des fréquences qui ne devraient pas s'y trouver, lorsque la fréquence porteuse ou la fréquence d'échantillonnage sont inférieures à deux fois la fréquence maximale contenue dans le signal.
Théorème d'échantillonnageLe théorème d'échantillonnage, dit aussi théorème de Shannon ou théorème de Nyquist-Shannon, établit les conditions qui permettent l'échantillonnage d'un signal de largeur spectrale et d'amplitude limitées. La connaissance de plus de caractéristiques du signal permet sa description par un nombre inférieur d'échantillons, par un processus d'acquisition comprimée. Dans le cas général, le théorème d'échantillonnage énonce que l’échantillonnage d'un signal exige un nombre d'échantillons par unité de temps supérieur au double de l'écart entre les fréquences minimale et maximale qu'il contient.
Signature spectralevignette|Signature spectrale (absorption) de différents composés de l'atmosphère terrestre dans le domaine spectral visible. La signature spectrale d'une particule ou d'un objet est l'émission ou l'absorption de rayonnements électromagnétiques à des longueurs d'onde qui sont caractéristiques de cette particule ou de cet objet. Dans le domaine militaire, principalement dans l'aéronautique militaire, les constructeurs s'attachent à concevoir des appareils dont la signature spectrale est la plus neutre possible, afin qu'ils ne puissent être identifiés à l'aide des méthodes d'analyse spectrale standard, comme avec des spectroradiomètres infrarouges ou des imageurs spectraux.
Sous-espace vectoriel engendréDans un espace vectoriel E, le sous-espace vectoriel engendré par une partie A de E est le plus petit sous-espace vectoriel de E contenant A. C'est aussi l'ensemble des combinaisons linéaires de vecteurs de A. Le sous-espace vectoriel engendré par une famille de vecteurs est le plus petit sous-espace contenant tous les vecteurs de cette famille. Une famille de vecteurs ou une partie est dite génératrice de E si le sous-espace qu'elle engendre est l'espace entier E.
Combinaison barycentriqueEn géométrie vectorielle, une combinaison barycentrique ou combinaison affine de vecteurs est une combinaison linéaire dont la somme des coefficients est égale à 1. L’expression s’emploie par défaut pour une somme finie, mais parfois aussi pour la limite d’une série sous réserve de convergence. Les combinaisons barycentriques correspondent ainsi aux barycentres des vecteurs vus comme des points de l’espace affine associé, et l’ensemble de ces combinaisons barycentriques constitue le sous-espace affine engendré par ces points.