Courbe elliptiqueEn mathématiques, une courbe elliptique est un cas particulier de courbe algébrique, munie entre autres propriétés d'une addition géométrique sur ses points. Les courbes elliptiques ont de nombreuses applications dans des domaines très différents des mathématiques : elles interviennent ainsi en mécanique classique dans la description du mouvement des toupies, en théorie des nombres dans la démonstration du dernier théorème de Fermat, en cryptologie dans le problème de la factorisation des entiers ou pour fabriquer des codes performants.
Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Échange de clés Diffie-HellmanEn cryptographie, l'échange de clés Diffie-Hellman, du nom de ses auteurs Whitfield Diffie et Martin Hellman, est une méthode, publiée en 1976, par laquelle deux agents, nommés par convention Alice et Bob, peuvent se mettre d'accord sur un nombre (qu'ils peuvent utiliser comme clé pour chiffrer la conversation suivante) sans qu'un troisième agent appelé Ève puisse découvrir le nombre, même en ayant écouté tous leurs échanges. Cette idée valut en 2015 aux deux auteurs le prix Turing.
Hypothèse calculatoireEn cryptographie, une hypothèse de difficulté calculatoire est une hypothèse qui sert à évaluer et à démontrer la robustesse des primitives cryptographiques. Dans certains cas, la sécurité est dite inconditionnelle si elle ne repose sur aucune hypothèse de difficulté calculatoire ; un exemple courant est la technique dite du masque jetable, où le masque est aussi grand que le message. Cependant, il est souvent impossible d'atteindre une forme de sécurité aussi forte ; dans de tels cas, les cryptographes doivent s'en remettre à une forme de sécurité dite « calculatoire ».
Cryptosystème de ElGamalLe cryptosystème d'ElGamal, ou chiffrement El Gamal (ou encore système d'El Gamal) est un protocole de cryptographie asymétrique inventé par Taher Elgamal en 1984 et construit à partir du problème du logarithme discret. Ce protocole est utilisé par le logiciel libre GNU Privacy Guard dont les versions récentes implémentent jusqu'à sa version sur les courbes elliptiques. Contrairement au chiffrement RSA, il n’a jamais été sous la protection d’un brevet.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Moduli stack of elliptic curvesIn mathematics, the moduli stack of elliptic curves, denoted as or , is an algebraic stack over classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves . In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme to it correspond to elliptic curves over . The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed.
Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Parallélisme (informatique)vignette|upright=1|Un des éléments de Blue Gene L cabinet, un des supercalculateurs massivement parallèles les plus rapides des années 2000. En informatique, le parallélisme consiste à mettre en œuvre des architectures d'électronique numérique permettant de traiter des informations de manière simultanée, ainsi que les algorithmes spécialisés pour celles-ci. Ces techniques ont pour but de réaliser le plus grand nombre d'opérations en un temps le plus petit possible.
NP-difficilevignette|300px|Mise en évidence d'un problème NP-difficile si Problème P ≟ NP. Un problème NP-difficile est, en théorie de la complexité, un problème appartenant à la classe NP-difficile, ce qui revient à dire qu'il est au moins aussi difficile que les problèmes les plus difficiles de la classe NP. Ainsi, un problème H est NP-difficile, si tout problème L de la classe NP peut être réduit en temps polynomial à H. Si un problème NP-difficile est dans NP, alors c'est un problème NP-complet.