Source de courantUne source de courant est un dispositif pouvant produire un courant électrique constant fonctionnant sur une plage de tension donnée. vignette|Source de courant parfaite (rouge) ; source de courant idéale sur une plage de tension (vert) ; source de courant avec résistance en parallèle (turquoise). Ce dispositif produit un courant stable I quelle que soit la tension à ses bornes. Une source de courant réelle a une résistance interne en parallèle de très grande valeur (infinie dans le cas d'une source idéale).
Espace symétriqueEn mathématiques, et plus spécifiquement en géométrie différentielle, un espace symétrique est une variété, espace courbe sur lequel on peut définir une généralisation convenable de la notion de symétrie centrale. La définition précise de la notion d'espace symétrique dépend du type de structure dont on munit la variété. Le plus couramment, on entend par espace symétrique une variété munie d'une métrique riemannienne pour laquelle l'application de symétrie le long des géodésiques constitue une isométrie.
Symétrie de translationLa symétrie de translation ou invariance sous les translations est le nom que l'on donne au fait que les lois de la physique (les lois sur la gravité de Newton, sur l'électromagnétisme de Maxwell, sur la relativité d'Einstein) s'écrivent de la même façon en tout point de l'espace. Il y a brisure de symétrie lorsqu'un système ne possède pas la symétrie de translation On peut donner une explication plus précise. Prenons d'abord l'exemple de la loi de la gravitation de Newton. On prend un référentiel de référence qu'on appelle .
Paramètre de positionvignette|Animation de la fonction de densité d'une loi normale, en faisant varier la moyenne entre -5 et 5. La moyenne est un paramètre de position et ne fait que déplacer la courbe en forme de cloche. En théorie des probabilités et statistiques, un paramètre de position (ou de localisation) est, comme son nom l'indique, un paramètre qui régit la position d'une densité de probabilité. Si ce paramètre (scalaire ou vectoriel) est noté λ, la densité se présente formellement comme : où f représente en quelque sorte la densité témoin.
Sphèrevignette|Rendu en fil de fer d'une sphère dans un espace euclidien. En géométrie dans l'espace, une sphère est une surface constituée de tous les points situés à une même distance d'un point appelé centre. La valeur de cette distance au centre est le rayon de la sphère. La géométrie sphérique est la science qui étudie les propriétés des sphères. La surface de la Terre peut, en première approximation, être modélisée par une sphère dont le rayon est d'environ .
SymétrieLa symétrie est une propriété d'un système : c'est lorsque deux parties sont semblables. L'exemple le plus connu est la symétrie en géométrie. De manière générale, un système est symétrique quand on peut permuter ses éléments en laissant sa forme inchangée. Le concept d'automorphisme permet de préciser cette définition. Un papillon, par exemple, est symétrique parce qu'on peut permuter tous les points de la moitié gauche de son corps avec tous les points de la moitié droite sans que son apparence soit modifiée.
Partie relativement compacteEn mathématiques, une partie relativement compacte d'un espace topologique X est un sous-ensemble Y de X inclus dans une partie compacte de X (pour la topologie induite). Rappelons que dans la littérature française, un compact est supposé séparé. Si X est séparé, alors une partie de X est relativement compacte (si et) seulement si son adhérence est compacte. Dans un espace métrisable X, une partie Y est relativement compacte si et seulement si toute suite dans Y possède une sous-suite qui converge dans X.
Symétrie (physique)En physique la notion de symétrie, qui est intimement associée à la notion d'invariance, renvoie à la possibilité de considérer un même système physique selon plusieurs points de vue distincts en termes de description mais équivalents quant aux prédictions effectuées sur son évolution. Une théorie physique possède alors une symétrie S, si toute équation dans cette théorie décrit tout aussi correctement une particule ρ qu'une particule -ρ 'symétrique' de ρ.
Espace dénombrablement compactEn mathématiques, un espace dénombrablement compact est un espace topologique dont tout recouvrement par une famille dénombrable d'ouverts possède un sous-recouvrement fini. La notion de compacité dénombrable entretient des rapports étroits avec celles de quasi-compacité et compacité et celle de compacité séquentielle. Pour un espace métrisable, ces quatre notions sont équivalentes. Soit X un espace topologique (non supposé séparé).
Impedance parametersImpedance parameters or Z-parameters (the elements of an impedance matrix or Z-matrix) are properties used in electrical engineering, electronic engineering, and communication systems engineering to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. They are members of a family of similar parameters used in electronic engineering, other examples being: S-parameters, Y-parameters, H-parameters, T-parameters or ABCD-parameters.