Loi GammaEn théorie des probabilités et en statistiques, une distribution Gamma ou loi Gamma est un type de loi de probabilité de variables aléatoires réelles positives. La famille des distributions Gamma inclut, entre autres, la loi du χ2 et les distributions exponentielles et la distribution d'Erlang. Une distribution Gamma est caractérisée par deux paramètres k et θ et qui affectent respectivement la forme et l'échelle de la représentation graphique de sa fonction de densité.
Loi inverse-gammaDans la Théorie des probabilités et en statistiques, la distribution inverse-gamma est une famille de lois de probabilité continues à deux paramètres sur la demi-droite des réels positifs. Il s'agit de l'inverse d'une variable aléatoire distribuée selon une distribution Gamma. La densité de probabilité de la loi inverse-gamma est définie sur le support par: où est un paramètre de forme et un paramètre d'intensité, c'est-à-dire l'inverse d'un paramètre d'échelle.
Open quantum systemIn physics, an open quantum system is a quantum-mechanical system that interacts with an external quantum system, which is known as the environment or a bath. In general, these interactions significantly change the dynamics of the system and result in quantum dissipation, such that the information contained in the system is lost to its environment. Because no quantum system is completely isolated from its surroundings, it is important to develop a theoretical framework for treating these interactions in order to obtain an accurate understanding of quantum systems.
LindbladianIn quantum mechanics, the Gorini–Kossakowski–Sudarshan–Lindblad equation (GKSL equation, named after Vittorio Gorini, Andrzej Kossakowski, George Sudarshan and Göran Lindblad), master equation in Lindblad form, quantum Liouvillian, or Lindbladian is one of the general forms of Markovian master equations describing open quantum systems. It generalizes the Schrödinger equation to open quantum systems; that is, systems in contacts with their surroundings.
Variance-gamma distributionThe variance-gamma distribution, generalized Laplace distribution or Bessel function distribution is a continuous probability distribution that is defined as the normal variance-mean mixture where the mixing density is the gamma distribution. The tails of the distribution decrease more slowly than the normal distribution. It is therefore suitable to model phenomena where numerically large values are more probable than is the case for the normal distribution. Examples are returns from financial assets and turbulent wind speeds.
Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Loi Gamma généraliséeEn théorie des probabilités et en statistiques, une loi Gamma généralisée est un type de loi de probabilité de variables aléatoires réelles positives avec deux paramètres de forme (et un paramètre d'échelle), qui est une extension de la loi Gamma avec un paramètre de forme additionnel. Comme de nombreuses lois sont utilisées comme modèles paramétriques dans l'analyse de survie (telles que la loi exponentielle, la loi de Weibull et la loi Gamma) sont des cas particuliers de la loi Gamma généralisée, elle est parfois utilisée pour déterminer quel modèle paramétrique est adapté pour un jeu de données.
Loi bêta primeEn théorie des probabilités et en statistique, la loi bêta prime (également connue sous les noms loi bêta II ou loi bêta du second type) est une loi de probabilité continue définie dont le support est et dépendant de deux paramètres de forme. Si une variable aléatoire X suit une loi bêta prime, on notera . Sa densité de probabilité est donnée par : où B est la fonction bêta. Cette loi est une loi de Pearson de type VI. Le mode d'une variable aléatoire de loi bêta prime est .
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
Portefeuille (finance)Un portefeuille (en finance) désigne une collection d'actifs financiers détenus par un établissement ou un individu. Cela peut aussi désigner des valeurs mobilières détenues à titre d'investissements, de dépôt, de provision ou de garantie. Une caractéristique importante d'un portefeuille est son degré de diversification qui permet d'atteindre un juste milieu entre le risque, la volatilité et la rentabilité du portefeuille, tout en tenant compte de la durée prévue du placement (horizon de temps).