Preuve de l'irrationalité de πDans les années 1760, Johann Heinrich Lambert a été le premier à prouver que le nombre est irrationnel, c'est-à-dire qu'il ne peut pas s'écrire sous forme d'une fraction a/b, avec a et b entiers non nuls. Au , Charles Hermite établit une preuve ne reposant sur aucun prérequis au-delà de l'analyse élémentaire. Des versions simplifiées de la preuve de Hermite ont été plus tard trouvées par Mary Cartwright et Ivan Niven. Une autre preuve, une version simplifiée de celle de Lambert, est trouvée par Miklós Laczkovich.
DéfinitionUne définition est une proposition qui met en équivalence un élément définissant et un élément étant défini. Une définition a pour but de clarifier, d'expliquer. Elle détermine les limites ou « un ensemble de traits qui circonscrivent un objet ». Selon les Définitions du pseudo-Platon, la définition est la . Aristote, dans le Topiques, définit le mot comme En mathématiques, on définit une notion à partir de notions antérieurement définies. Les notions de bases étant les symboles non logiques du langage considéré, dont l'usage est défini par les axiomes de la théorie.
Arbres dans la mythologievignette|L'arbre de la Bodhi de Bodhgaya est censé être le Ficus religiosa sous lequel Gautama Bouddha a atteint l'illumination. Il est vénéré par les bouddhistes. La figue sacrée est également vénérée dans l'hindouisme et le jaïnisme . Les arbres sont significatifs dans de nombreuses mythologies et religions du monde et ont reçu des significations profondes et sacrées à travers les âges. Les êtres humains, observant la croissance et la mort des arbres, et la mort annuelle et la renaissance de leur feuillage, les ont souvent vus comme de puissants symboles de croissance, de mort et de renaissance.
Racine carrée de deuxLa racine carrée de deux, notée (ou parfois 2), est définie comme le seul nombre réel positif qui, lorsqu’il est multiplié par lui-même, donne le nombre 2, autrement dit × = 2. C’est un nombre irrationnel, dont une valeur approchée à 10 près est : ≈ 1,414 213 562. vignette|L’hypoténuse d’un triangle rectangle isocèle de côté 1 vaut . Le calcul d’une valeur approchée de a été un problème mathématique pendant des siècles. Ces recherches ont permis de perfectionner les algorithmes de calculs d’extraction de racines carrées.
Nombre de LiouvilleEn mathématiques, et plus précisément en théorie des nombres, un nombre de Liouville est un nombre réel x ayant la propriété suivante :pour tout entier n, il existe des entiers q > 1 et p tels que 0 < |x – p/q| < 1/q ou, ce qui est équivalent : pour tout entier n et tout réel , il existe des entiers q > 0 et p tels que 0 < |x – p/q| < A/q. Un nombre de Liouville peut ainsi être approché « de manière très fine » par une suite de nombres rationnels.
RationalitéEn philosophie, en psychologie et en sociologie, la rationalité est un concept servant à définir et mesurer la capacité de raisonnement, telle qu'elle se manifeste dans un (ou des) comportement(s) humain(s). Plus précisément, le mot désigne la qualité de ce qui, dans l’ordre de la connaissance, est (c'est-à-dire relevant de l'usage de la raison, ou intellect) et de ce qui, plus rarement, dans l’ordre de la pratique, relève du raisonnable.
Nombre rationnelUn nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
Lexical definitionThe lexical definition of a term, also known as the dictionary definition, is the definition closely matching the meaning of the term in common usage. As its other name implies, this is the sort of definition one is likely to find in the dictionary. A lexical definition is usually the type expected from a request for definition, and it is generally expected that such a definition will be stated as simply as possible in order to convey information to the widest audience.
Arbre (théorie des graphes)En théorie des graphes, un arbre est un graphe acyclique et connexe. Sa forme évoque en effet la ramification des branches d'un arbre. Par opposition aux arbres simples, arbres binaires, ou arbres généraux de l'analyse d'algorithme ou de la combinatoire analytique, qui sont des plongements particuliers d'arbres (graphes) dans le plan, on appelle parfois les arbres (graphes) arbres de Cayley, car ils sont comptés par la formule de Cayley. Un ensemble d'arbres est appelé une forêt.
Fonction rationnelleEn mathématiques, une fonction rationnelle est une fonction définie par une fraction rationnelle, c'est-à-dire une dont le numérateur et le dénominateur sont des polynômes. En pratique, l'ensemble de définition est généralement (ensemble des réels) ou (ensemble des complexes). Si P et Q sont deux fonctions polynomiales et si Q n'est pas une fonction nulle, la fonction est définie pour tout x tel que Q(x) ≠ 0 par Une fonction qui n'est pas rationnelle est dite irrationnelle.