Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Commande prédictiveLa commande prédictive (ou compensation ou correction anticipatrice) est une technique de commande avancée de l’automatique. Elle a pour objectif de commander des systèmes industriels complexes. Le principe de cette technique est d'utiliser un modèle dynamique du processus à l'intérieur du contrôleur en temps réel afin d'anticiper le futur comportement du procédé. La commande prédictive fait partie des techniques de contrôle à modèle interne (IMC: Internal Model Controler).
Méthodes de points intérieursvignette|Visualisation de la méthode des points intérieur : le chemin reste à l’intérieur du polyèdre. vignette|Visualisation de la méthode du simplexe : le chemin suit les arêtes du polyèdre vignette|Visualisation de la méthode par ellipsoïde : l’ellipse se rétrécit Les méthodes de points intérieurs forment une classe d’algorithmes qui permettent de résoudre des problèmes d’optimisation mathématique.
Méthode de l'ellipsoïdeEn optimisation mathématique, la méthode de l'ellipsoïde est une méthode itérative utilisée pour minimiser des fonctions convexes. En informatique théorique, cette méthode est connue comme étant le premier algorithme de complexité polynomiale découvert pour résoudre les problèmes d'optimisation linéaire. L'algorithme construit une suite d'ellipsoïdes de plus en plus petits, qui enserrent à chaque étape le minimum de la fonction objectif.
AutomatiqueL’automatique est une science qui traite de la modélisation, de l’analyse, de l’identification et de la commande des systèmes dynamiques. Elle inclut la cybernétique au sens étymologique du terme, et a pour fondements théoriques les mathématiques, la théorie du signal et l’informatique théorique. L’automatique permet de commander un système en respectant un cahier des charges (rapidité, précision, stabilité...). Les professionnels en automatique se nomment automaticiens.
Commande LQEn automatique, la Commande linéaire quadratique, dite Commande LQ, est une méthode qui permet de calculer la matrice de gains d'une commande par retour d'état. L'initiateur de cette approche est Kalman, auteur de trois articles fondamentaux entre 1960 et 1964. Les résultats de Kalman ont été complétés par de nombreux auteurs. Nous ne traiterons ici que de la commande linéaire quadratique à horizon infini dans le cas d'un système linéaire stationnaire (ou « invariant »), renvoyant à l'article Commande optimale pour le cas d'un horizon fini et d'un système linéaire dont les matrices varient en fonction du temps.
Système numérique de contrôle-commandevignette|Deux racks de CS3000, un SNCC de Yokogawa. De droite à gauche, dans le rack supérieur : une alimentation, une CPU, une carte bus pour communiquer avec l'autre rack, des cartes d'entrées-sorties ; dans le rack inférieur : idem sauf la CPU. On peut remarquer que la CPU est connectée à deux câbles Ethernet redondants pour communiquer avec d'autres CPU et des PC de supervision. Un système numérique de contrôle-commande (SNCC, ou DCS pour distributed control system en anglais) est un système de contrôle d'un procédé industriel doté d'une interface homme-machine pour la supervision et d'un réseau de communication numérique.
Sliding mode controlIn control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal (or more rigorously, a set-valued control signal) that forces the system to "slide" along a cross-section of the system's normal behavior. The state-feedback control law is not a continuous function of time. Instead, it can switch from one continuous structure to another based on the current position in the state space.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Régularisation zêtaEn analyse fonctionnelle, la régularisation zêta est une méthode de régularisation des déterminants d'opérateurs qui apparaissent lors de calculs d'intégrales de chemins en théorie quantique des champs. Soit un domaine compact de à bord . Sur ce domaine, on considère l'opérateur positif , où est le Laplacien, muni de conditions aux limites sur le bord du domaine (Dirichlet, Neumann, mixtes) qui précisent complètement le problème.