Constrained optimizationIn mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The objective function is either a cost function or energy function, which is to be minimized, or a reward function or utility function, which is to be maximized.
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Régularisation (physique)En physique théorique, la régularisation est une procédure ad-hoc qui consiste à modifier une grandeur physique qui présente une singularité afin de la rendre régulière. La régularisation est par exemple abondamment utilisée en théorie quantique des champs en relation avec la procédure de renormalisation, ainsi qu'en relativité générale pour le calcul du problème à deux corps en paramétrisation post-newtonienne. Le potentiel newtonien en coordonnées sphériques s'écrit : où k est une constante.
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Signification statistiquevignette|statistique En statistiques, le résultat d'études qui portent sur des échantillons de population est dit statistiquement significatif lorsqu'il semble exprimer de façon fiable un fait auquel on s'intéresse, par exemple la différence entre 2 groupes ou une corrélation entre 2 données. Dit autrement, il est alors très peu probable que ce résultat apparent soit en fait trompeur s'il n'est pas dû, par exemple, à un , trop petit ou autrement non représentatif (surtout si la population est très diverse).
Test (informatique)vignette|Une programmeuse écrivant du code Java avec JUnit. En informatique, un test désigne une procédure de vérification partielle d'un système. Son objectif principal est d'identifier un nombre maximal de comportements problématiques du logiciel. Il permet ainsi, dès lors que les problèmes identifiés seront corrigés, d'en augmenter la qualité. D'une manière plus générale, le test désigne toutes les activités qui consistent à rechercher des informations quant à la qualité du système afin de permettre la prise de décisions.
Optimisation multidisciplinaireL'Optimisation de Conception Multidisciplinaire (OMD ou MDO, Multidisciplinary Design Optimisation, en anglais) est un domaine d'ingénierie qui utilise des méthodes d'optimisation afin de résoudre des problèmes de conception mettant en œuvre plusieurs disciplines. La MDO permet aux concepteurs d'incorporer les effets de chacune des disciplines en même temps. L'optimum global ainsi trouvé est meilleur que la configuration trouvée en optimisant chaque discipline indépendamment des autres, car l'on prend en compte les interactions entre les disciplines.
Performances (informatique)En informatique, les performances énoncent les indications chiffrées mesurant les possibilités maximales ou optimales d'un matériel, d'un logiciel, d'un système ou d'un procédé technique pour exécuter une tâche donnée. Selon le contexte, les performances incluent les mesures suivantes : Un faible temps de réponse pour effectuer une tâche donnée Un débit élevé (vitesse d'exécution d'une tâche) L'efficience : faible utilisation des ressources informatiques : processeur, mémoire, stockage, réseau, consommation électrique, etc.
Efficacité (statistiques)En statistique, lefficacité est une mesure de la qualité d'un estimateur, d'une expérimentation ou d'un test statistique. Elle permet d'évaluer le nombre d'observations nécessaires pour atteindre un seuil : plus un estimateur est efficace, plus l'échantillon d'observations nécessaire pour atteindre un objectif de précision sera petit. Lefficacité relative de deux procédures est le rapport de leurs efficacités, bien que le concept soit plus utilisé pour le rapport de l'efficacité d'une procédure donnée et d'une procédure théorique optimale.