Relation de commutation canoniqueEn mécanique quantique, la relation de commutation canonique est la relation fondamentale entre les grandeurs conjuguées canoniques (grandeurs qui sont liées par définition telles que l'une est la transformée de Fourier d'une autre). Par exemple : entre l'opérateur de position x et l'opérateur d'impulsion px dans la direction x d'une particule ponctuelle dans une dimension, où est le commutateur de x et px , i est l'unité imaginaire, et est la constante de Planck réduite .
Produit croiséIn mathematics, and more specifically in the theory of von Neumann algebras, a crossed product is a basic method of constructing a new von Neumann algebra from a von Neumann algebra acted on by a group. It is related to the semidirect product construction for groups. (Roughly speaking, crossed product is the expected structure for a group ring of a semidirect product group. Therefore crossed products have a ring theory aspect also. This article concentrates on an important case, where they appear in functional analysis.
Lax pairIn mathematics, in the theory of integrable systems, a Lax pair is a pair of time-dependent matrices or operators that satisfy a corresponding differential equation, called the Lax equation. Lax pairs were introduced by Peter Lax to discuss solitons in continuous media. The inverse scattering transform makes use of the Lax equations to solve such systems. A Lax pair is a pair of matrices or operators dependent on time and acting on a fixed Hilbert space, and satisfying Lax's equation: where is the commutator.
Moduli of algebraic curvesIn algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem.
Opérateur hamiltonienL’opérateur de Hamilton, opérateur hamiltonien ou tout simplement hamiltonien est un opérateur mathématique possédant de nombreuses applications dans divers domaines de la physique. D'après Jérôme Pérez, l'opérateur hamiltonien a été développé en 1811 par Joseph-Louis Lagrange alors qu'Hamilton n'avait que 6 ans. Lagrange a explicitement écrit : formule dans laquelle faisait référence à Christiaan Huygens et qu'il aurait appelé Huygensien.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Expression de forme ferméeEn mathématiques, une expression de forme fermée (également appelée expression fermée, expression de forme close, expression close ou expression explicite) est une expression mathématique pouvant s'obtenir par une combinaison de nombres ou de fonctions et d'opérations de référence. On emploie parfois le terme formule à la place du terme expression : formule de forme fermée, formule explicite, formule de forme close, etc. Le plus souvent, cette terminologie s'emploie pour des solutions d'équations ou de systèmes d'équations.
Variété abélienneEn mathématiques, et en particulier, en géométrie algébrique et géométrie complexe, une variété abélienne A est une variété algébrique projective qui est un groupe algébrique. La condition de est l'équivalent de la compacité pour les variétés différentielles ou analytiques, et donne une certaine rigidité à la structure. C'est un objet central en géométrie arithmétique. Une variété abélienne sur un corps k est un groupe algébrique A sur k, dont la variété algébrique sous-jacente est projective, connexe et géométriquement réduite.