Supervision (informatique)La supervision est une technique industrielle de suivi et de pilotage informatique de procédés de fabrication automatisés. La supervision concerne l'acquisition de données (mesures, alarmes, retour d'état de fonctionnement) et des paramètres de commande des processus généralement confiés à des automates programmables. Dans l'informatique, la supervision est la surveillance du bon fonctionnement d’un système ou d’une activité. À ne pas confondre avec l'hypervision, qui elle correspond à la centralisation des outils de supervision, d’infrastructure, d'applications et de référentiels (ex.
Robotiquethumb|upright=1.5|Nao, un robot humanoïde. thumb|upright=1.5|Des robots industriels au travail dans une usine. La robotique est l'ensemble des techniques permettant la conception et la réalisation de machines automatiques ou de robots. L'ATILF donne la définition suivante du robot : « il effectue, grâce à un système de commande automatique à base de microprocesseur, une tâche précise pour laquelle il a été conçu dans le domaine industriel, scientifique, militaire ou domestique ».
Stratégie de régulationUne stratégie (ou topologie) de régulation est, pour un procédé industriel, l'organisation du système de contrôle-commande en vue de maintenir une grandeur physique dans une plage de tolérance donnée. Le choix de stratégie est très important dans les industries de transformation (par exemple les industries chimiques, papetières, agroalimentaires) en raison de la variabilité d'un nombre élevé de grandeurs physiques incidentes (dites « perturbations ») qui y sont présentes.
Robotique industriellevignette|droite|Un robot industriel Kawasaki FS-03N, robot de soudage La robotique industrielle est officiellement définie par l'Organisation Internationale de Normalisation (ISO) comme étant un système commandé automatiquement, multi-applicatif, reprogrammable, polyvalent, manipulateur et programmable sur trois axes ou plus. Les applications typiques incluent les robots de soudage, de peinture et d'assemblage. L'avantage de la robotique industrielle est sa rapidité d'exécution et sa précision ainsi que la répétition de cette précision dans le temps.
Problème de satisfaction de contraintesLes problèmes de satisfaction de contraintes ou CSP (Constraint Satisfaction Problem) sont des problèmes mathématiques où l'on cherche des états ou des objets satisfaisant un certain nombre de contraintes ou de critères. Les CSP font l'objet de recherches intenses à la fois en intelligence artificielle et en recherche opérationnelle. De nombreux CSP nécessitent la combinaison d'heuristiques et de méthodes d'optimisation combinatoire pour être résolus en un temps raisonnable.
Système numérique de contrôle-commandevignette|Deux racks de CS3000, un SNCC de Yokogawa. De droite à gauche, dans le rack supérieur : une alimentation, une CPU, une carte bus pour communiquer avec l'autre rack, des cartes d'entrées-sorties ; dans le rack inférieur : idem sauf la CPU. On peut remarquer que la CPU est connectée à deux câbles Ethernet redondants pour communiquer avec d'autres CPU et des PC de supervision. Un système numérique de contrôle-commande (SNCC, ou DCS pour distributed control system en anglais) est un système de contrôle d'un procédé industriel doté d'une interface homme-machine pour la supervision et d'un réseau de communication numérique.
Maîtrise statistique des procédésLa maîtrise statistique des procédés (MSP) (Statistical Process Control ou SPC en anglais), est le contrôle statistique des processus. Au travers de représentations graphiques montrant les écarts (en + ou en - ou en =) à une valeur donnée de référence, il sert à anticiper sur les mesures à prendre pour améliorer n'importe quel processus de fabrication industrielle (automobile, métallurgie, etc.). C'est surtout au Japon après la Seconde Guerre mondiale que cette discipline s'est implantée grâce à William Edwards Deming, disciple de Walter A.
Théorie du contrôleEn mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Planification de mouvementLa planification de mouvement (en anglais motion planning) est un ensemble de techniques mathématiques et informatiques permettant de calculer des trajectoires pour un système cinématique, avec pour contrainte l'absence de collision. Il existe deux principales catégories de méthodes pour la planification de mouvement : La première est composée de méthodes dites déterministes, appelées ainsi car elles permettent de retrouver le même chemin à chaque exécution, sous réserve d'avoir des conditions initiales équivalentes.