Optique non linéaireLorsqu'un milieu matériel est mis en présence d'un champ électrique , il est susceptible de modifier ce champ en créant une polarisation . Cette réponse du matériau à l'excitation peut dépendre du champ de différentes façons. L'optique non linéaire regroupe l'ensemble des phénomènes optiques présentant une réponse non linéaire par rapport à ce champ électrique, c'est-à-dire une réponse non proportionnelle à E.
Polarisation circulaireLa polarisation circulaire d'un rayonnement électromagnétique est une polarisation où la norme du vecteur du champ électrique ne change pas alors que son orientation change selon un mouvement de rotation. En électrodynamique la norme et la direction d'un champ électrique sont représentés par un vecteur comme on peut le voir dans l'animation ci-contre. Dans le cas d'une onde polarisée circulairement, les vecteurs d'un champ électrique, à un point donné dans l'espace, décrivent un cercle en fonction du temps.
Polarisation (optique)La polarisation est une propriété qu'ont les ondes vectorielles (ondes qui peuvent osciller selon plus d'une orientation) de présenter une répartition privilégiée de l'orientation des vibrations qui les composent. Les ondes électromagnétiques, telles que la lumière, ou les ondes gravitationnelles ont ainsi des propriétés de polarisation. Les ondes mécaniques transverses dans les solides peuvent aussi être polarisées. Cependant, les ondes longitudinales (telles que les ondes sonores) ne sont pas concernées.
Plane of incidenceIn describing reflection and refraction in optics, the plane of incidence (also called the incidence plane or the meridional plane) is the plane which contains the surface normal and the propagation vector of the incoming radiation. (In wave optics, the latter is the k-vector, or wavevector, of the incoming wave.) When reflection is specular, as it is for a mirror or other shiny surface, the reflected ray also lies in the plane of incidence; when refraction also occurs, the refracted ray lies in the same plane.
Angle d'incidence (optique)vignette|Schéma indiquant l'angle d'incidence : Θ est l'angle d'incidence du rayon incident en rouge sur le milieu de couleur verte.|222x222px L’angle d’incidence en optique et plus généralement en mécanique ondulatoire est l'angle entre la direction de propagation de l'onde incidente et la normale au dioptre ou à l'interface considérée. Le rayonnement incident peut être par exemple de type lumineux, acoustique, sismique, X, etc.
PolariseurUn polariseur est un instrument d'optique qui sélectionne dans une onde lumineuse incidente une direction de polarisation préférentielle : la plupart des polariseurs permettent d'obtenir une lumière polarisée rectilignement dans une certaine direction. Dans ce cas, cette direction est appelée l’axe du polariseur. Mis en fin de système optique, le polariseur est appelé « analyseur ». Les polariseurs sont présents dans de nombreuses expériences d'optique et sont donc utilisés dans des instruments d'optique.
Biréfringencedroite|vignette|400px|Le texte apparait en double après avoir traversé le cristal de calcite. C'est la double réfraction, un phénomène caractéristique des milieux biréfringents. La biréfringence est la propriété physique d'un matériau dans lequel la lumière se propage de façon anisotrope. Dans un milieu biréfringent, l'indice de réfraction n'est pas unique, il dépend de la direction de polarisation de l'onde lumineuse. Un effet spectaculaire de la biréfringence est la double réfraction par laquelle un rayon lumineux pénétrant dans le cristal est divisé en deux.
Lame à retardthumb|360px|Une lame demi-onde. La lumière entrant dans la lame peut être décomposée en deux polarisations perpendiculaires (en bleu et vert). À l'intérieur de la lame, la polarisation verte prend un retard par rapport à la bleue. La lumière en sortie est alors polarisée différemment. Une lame à retard est un outil optique capable de modifier la polarisation de la lumière la traversant. Contrairement à un polariseur, l'état de polarisation de la lumière à la sortie de la lame dépend de l'état à l'entrée.
Coefficient de FresnelLes coefficients de Fresnel, introduits par Augustin Jean Fresnel (1788-1827), interviennent dans la description du phénomène de réflexion-réfraction des ondes électromagnétiques à l'interface entre deux milieux, dont l'indice de réfraction est différent. Ils expriment les liens entre les amplitudes des ondes réfléchies et transmises par rapport à l'amplitude de l'onde incidente. On définit le coefficient de réflexion en amplitude r et le coefficient de transmission en amplitude t du champ électrique par : où Ei, Er et Et sont les amplitudes associées respectivement au champ électrique incident, réfléchi et transmis (réfracté).
Point d'inflexionthumb|Représentation graphique de la fonction x ↦ x montrant un point d'inflexion aux coordonnées (0, 0). thumb|Point d'inflexion de la fonction arc tangente. En mathématiques, et plus précisément en analyse et en géométrie différentielle, un point d'inflexion est un point où s'opère un changement de concavité d'une courbe plane. En un tel point, la tangente traverse la courbe. C'est pourquoi les points d'inflexion, quand on arrive à les déterminer explicitement, aident à bien représenter l'allure de la courbe.