Anneau principalvignette|Schéma heuristique des structures algébriques. Les anneaux principaux forment un type d'anneaux commutatifs important dans la théorie mathématique de la divisibilité (voir aussi l'article anneau principal non commutatif). Ce sont des anneaux intègres auxquels on peut étendre deux théorèmes qui, au sens strict, concernent l'anneau des entiers relatifs : le théorème de Bachet-Bézout et le théorème fondamental de l'arithmétique. Un anneau A est dit commutatif lorsque, pour tous éléments a et b de A, .
Module monogèneEn algèbre, un module monogène est un module qui peut être engendré par un seul élément. Par exemple, un Z-module monogène est un groupe (abélien) monogène. Le concept est analogue à celui de groupe monogène, c'est-à-dire un groupe qui est engendré par un élément. Un R-module gauche M est dit monogène si M peut être engendré par un seul élément, c'est-à-dire s'il existe x dans M tel que M = (x) = Rx = {rx | r ∈ R}. De même, un R-module à droite N est monogène s'il existe y ∈ N tel que N = yR.
Anneau des entiersEn algèbre commutative, l'anneau des entiers est une construction que l'on peut obtenir à partir de tout corps de nombres en considérant ses éléments entiers. Par exemple, l'anneau des entiers de est . Il existe des algorithmes efficaces pour calculer cet anneau pour tout corps de nombres. La notion peut en fait être étendue à d'autres objets (notamment les corps de fonctions), et porte une interprétation géométrique. Élément entier Soit K un corps de nombres. Un élément de K est dit entier s'il est racine d'un polynôme unitaire à coefficients dans .
Groupe symplectiqueEn mathématiques, le terme groupe symplectique est utilisé pour désigner deux familles différentes de groupes linéaires. On les note Sp(2n, K) et Sp(n), ce dernier étant parfois nommé groupe compact symplectique pour le distinguer du premier. Cette notation ne fait pas l’unanimité et certains auteurs en utilisent d’autres, différant généralement d’un facteur 2. La notation utilisée dans cet article est en rapport avec la taille des matrices représentant les groupes.
Quot schemeIn algebraic geometry, the Quot scheme is a scheme parametrizing sheaves on a projective scheme. More specifically, if X is a projective scheme over a Noetherian scheme S and if F is a coherent sheaf on X, then there is a scheme whose set of T-points is the set of isomorphism classes of the quotients of that are flat over T. The notion was introduced by Alexander Grothendieck. It is typically used to construct another scheme parametrizing geometric objects that are of interest such as a Hilbert scheme.
Espace classifiantEn mathématiques, un espace classifiant pour un groupe topologique G est la base d’un fibré principal particulier EG → BG appelé fibré universel, induisant tous les fibrés ayant ce groupe de structure sur n’importe quel CW-complexe X par (pullback). Dans le cas d’un groupe discret, la définition d’espace classifiant correspond à celle d’un espace d'Eilenberg-MacLane K(G, 1), c’est-à-dire un espace connexe par arcs dont tous les groupes d'homotopie sont triviaux en dehors du groupe fondamental (lequel est isomorphe à G).
Lie algebra cohomologyIn mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by to coefficients in an arbitrary Lie module. If is a compact simply connected Lie group, then it is determined by its Lie algebra, so it should be possible to calculate its cohomology from the Lie algebra.
Profinite integerIn mathematics, a profinite integer is an element of the ring (sometimes pronounced as zee-hat or zed-hat) where indicates the profinite completion of , the index runs over all prime numbers, and is the ring of p-adic integers. This group is important because of its relation to Galois theory, étale homotopy theory, and the ring of adeles. In addition, it provides a basic tractable example of a profinite group. The profinite integers can be constructed as the set of sequences of residues represented as such that .
Fundamental groupoidIn algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a topological space. In terms of , the fundamental groupoid is a certain functor from the category of topological spaces to the category of groupoids. Let X be a topological space. Consider the equivalence relation on continuous paths in X in which two continuous paths are equivalent if they are homotopic with fixed endpoints.
Henselian ringIn mathematics, a Henselian ring (or Hensel ring) is a local ring in which Hensel's lemma holds. They were introduced by , who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative. Some standard references for Hensel rings are , , and . In this article rings will be assumed to be commutative, though there is also a theory of non-commutative Henselian rings. A local ring R with maximal ideal m is called Henselian if Hensel's lemma holds.