Résumé
vignette|Schéma heuristique des structures algébriques. Les anneaux principaux forment un type d'anneaux commutatifs important dans la théorie mathématique de la divisibilité (voir aussi l'article anneau principal non commutatif). Ce sont des anneaux intègres auxquels on peut étendre deux théorèmes qui, au sens strict, concernent l'anneau des entiers relatifs : le théorème de Bachet-Bézout et le théorème fondamental de l'arithmétique. Un anneau A est dit commutatif lorsque, pour tous éléments a et b de A, . Il est dit intègre lorsqu'il est commutatif, a au moins deux éléments et vérifie la condition suivante : pour tous éléments a et b de A tels que ab soit nul, un au moins des éléments a et b est nul. Cette propriété a pour conséquence que tout élément non nul de A est simplifiable, c'est-à-dire que si a est un élément non nul de A, si b et c sont deux éléments de A tels que (resp. ), alors b est égal à c. La simplification utilisée pour les calculs sur les nombres entiers, rationnels, réels ou complexe est donc toujours valable. Dans toute la suite de l'article, A désigne un anneau intègre. Un idéal J est un sous-groupe additif de A stable par multiplication par n'importe quel élément a de A, ainsi si j est élément de J, aj l'est aussi, ou encore aJ est inclus dans J. Un idéal J de l'anneau A est dit principal s'il est composé des multiples d'un élément donné de l'anneau, autrement dit s'il existe un élément a de A tel que J est égal à aA. Un anneau est dit quasi-principal si tous ses idéaux sont principaux ; il est dit principal s'il est quasi-principal et intègre. Corps commutatif Tout corps commutatif K est un anneau trivialement principal. En effet, ses deux seuls idéaux sont {0} (engendré par 0) et K (engendré par 1). Anneau euclidien Un anneau euclidien est un anneau disposant d'une division euclidienne. Un tel anneau est toujours principal (cf. l'article détaillé). Des exemples de cette nature sont donnés par l'anneau Z des entiers relatifs ou encore l'anneau K[X] des polynômes à coefficients dans un corps K, par exemple celui des rationnels, des réels ou des complexes.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.