Test de la dérivée premièreEn analyse réelle, le test de la dérivée première permet de déterminer l'allure d'une fonction dérivable en étudiant le signe de sa dérivée. Grâce à ce test, on peut déduire les extrema locaux, le sens de variation de f et les points d'inflexion « horizontaux », permettant ainsi de donner une allure du graphe de la fonction . Soit avec un intervalle ouvert réel (par exemple où et sont des réels). On suppose de plus que dérivable sur .
Dérivée secondeLa dérivée seconde est la dérivée de la dérivée d'une fonction, lorsqu'elle est définie. Elle permet de mesurer l'évolution des taux de variations. Par exemple, la dérivée seconde du déplacement par rapport au temps est la variation de la vitesse (taux de variation du déplacement), soit l'accélération. Si la fonction admet une dérivée seconde, on dit qu'elle est de classe D2 ; si de plus cette dérivée seconde est continue, la fonction est dite de classe C2.
Principe variationnelUn principe variationnel est un principe physique s'exprimant sous une forme variationnelle et duquel, dans un domaine précis de la physique (mécanique, optique géométrique, électromagnétisme, etc), de nombreuses propriétés peuvent être déduites. Dans de nombreux cas, la résolution des équations se ramène à la recherche de géodésiques dans un espace approprié (en général l'espace des états du système physique étudié), sachant que ces géodésiques sont les extrémales d'une certaine intégrale représentant la longueur de l'arc joignant les points fixes dans cet espace abstrait.
SolitonUn soliton est une onde solitaire qui se propage sans se déformer dans un milieu non linéaire et dispersif. On en trouve dans de nombreux phénomènes physiques de même qu'ils sont la solution de nombreuses équations aux dérivées partielles non linéaires. thumb|Soliton hydrodynamique. Le phénomène associé a été observé pour la première fois en 1834 par l'Écossais John Scott Russell qui l'a observé initialement en se promenant le long d'un canal : il a suivi pendant plusieurs kilomètres une vague remontant le courant qui ne semblait pas vouloir faiblir.
Vague déferlanteUne vague est dite déferlante lorsque l'onde de force transportée par la houle dans la mer se transforme en un rouleau caractéristique et facilement identifiable à la surface de l'eau, généralement accompagné d'écume. Les vagues peuvent déferler pour deux raisons par l'effet du vent, ce qui est généralement le cas lorsqu'il est supérieur à 6 sur l'échelle de Beaufort en pleine mer par encontre de la masse d'eau en déplacement avec une remontée des fonds marins, comme c'est le cas sur la plupart des rivages.
Vecteur vitesseLe vecteur vitesse, nommé parfois vélocité, est une notion de physique qui à la différence de la vitesse comprend un déplacement vers un point. Par exemple, une voiture a une vitesse de 60 km/h mais a une vélocité de 60 km/h vers le nord, le nord étant un point de référence ou de destination pour la voiture. Le terme vélocité est tiré des mots latins velocitas et velox signifiant respectivement rapidité, vitesse, et rapide, prompt, véloce, mots ayant eux-mêmes une origine obscure, mais supposé étant lié à la racine proto-indo-européenne wegh- signifiant "aller, bouger," et "transport dans un véhicule".
Ressource hydriqueLa ressource hydrique, ou ressource en eau, comprend, au sens large, toutes les eaux accessibles comme ressources, c'est-à-dire utiles et disponibles pour l'être humain, les végétaux qu'il cultive, le bétail qu'il élève et les écosystèmes, à différents points du cycle de l'eau. Cette ressource est limitée en quantité et en qualité (surtout en zone sèche). Elle est indispensable à la vie et à la plupart des activités humaines, telles que l'agriculture, l'industrie et aux usages domestiques (alimentation en eau potable).
Generalizations of the derivativeIn mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc. The Fréchet derivative defines the derivative for general normed vector spaces . Briefly, a function , an open subset of , is called Fréchet differentiable at if there exists a bounded linear operator such that Functions are defined as being differentiable in some open neighbourhood of , rather than at individual points, as not doing so tends to lead to many pathological counterexamples.
Flow velocityIn continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is the flow speed and is a scalar. It is also called velocity field; when evaluated along a line, it is called a velocity profile (as in, e.g., law of the wall).
Théorie des écoulements à potentiel de vitessevignette|Diagrammes plan d'écoulement des fluides autour d'un cylindre et d'un profil d'aile En mécanique des fluides, la théorie des écoulements à potentiel de vitesse est une théorie des écoulements de fluide où la viscosité est négligée. Elle est très employée en hydrodynamique. La théorie se propose de résoudre les équations de Navier-Stokes dans les conditions suivantes : l'écoulement est stationnaire le fluide n'est pas visqueux il n'y a pas d'action externe (flux de chaleur, électromagnétisme, gravité .