Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Programmation par contraintesLa programmation par contraintes (PPC, ou CP pour constraint programming en anglais) est un paradigme de programmation apparu dans les années 1970 et 1980 permettant de résoudre des problèmes combinatoires de grande taille tels que les problèmes de planification et d'ordonnancement. En programmation par contraintes, on sépare la partie modélisation à l'aide de problèmes de satisfaction de contraintes (ou CSP pour Constraint Satisfaction Problem), de la partie résolution dont la particularité réside dans l'utilisation active des contraintes du problème pour réduire la taille de l'espace des solutions à parcourir (on parle de propagation de contraintes).
Ressources et consommation énergétiques mondialesLes réserves mondiales prouvées d'énergie fossile pouvaient être estimées en 2020, selon l'Agence fédérale allemande pour les sciences de la Terre et les matières premières, à , dont 55 % de charbon, 25 % de pétrole et 19 % de gaz naturel. Ces réserves assurent de production au rythme actuel ; cette durée est très variable selon le type d'énergie : pour le pétrole, pour le gaz naturel, pour le charbon. Pour l'uranium, avec les techniques actuelles, elle serait de 90 à selon les estimations, et sa durée d'utilisation pourrait se compter en siècles en ayant recours à la surgénération.
Économies d'énergieLes économies d'énergie sont les gains obtenus en réduisant la consommation d'énergie ou les pertes sur l'énergie produite. Les économies d'énergie sont devenues un objectif important des pays fortement consommateurs d'énergie vers la fin du , notamment après le choc pétrolier de 1973 puis à partir des années 1990, afin de répondre à plusieurs inquiétudes : la crainte d'un épuisement des ressources naturelles, particulièrement des combustibles fossiles ; le réchauffement climatique résultant des émissions de gaz à effet de serre ; les problèmes politiques et de sécurité d'approvisionnement dus à l'inégale répartition des ressources sur la planète ; le coût de l'énergie que la combinaison de ces phénomènes peut faire augmenter.
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
Problème de satisfaction de contraintesLes problèmes de satisfaction de contraintes ou CSP (Constraint Satisfaction Problem) sont des problèmes mathématiques où l'on cherche des états ou des objets satisfaisant un certain nombre de contraintes ou de critères. Les CSP font l'objet de recherches intenses à la fois en intelligence artificielle et en recherche opérationnelle. De nombreux CSP nécessitent la combinaison d'heuristiques et de méthodes d'optimisation combinatoire pour être résolus en un temps raisonnable.
Chromosome (genetic algorithm)In genetic algorithms (GA), or more general, evolutionary algorithms (EA), a chromosome (also sometimes called a genotype) is a set of parameters which define a proposed solution of the problem that the evolutionary algorithm is trying to solve. The set of all solutions, also called individuals according to the biological model, is known as the population. The genome of an individual consists of one, more rarely of several, chromosomes and corresponds to the genetic representation of the task to be solved.
Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Markov modelIn probability theory, a Markov model is a stochastic model used to model pseudo-randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it (that is, it assumes the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. For this reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable for a given model to exhibit the Markov property.
Processeurthumb|La puce d'un microprocesseur Intel 80486DX2 dans son boîtier (taille réelle : ). Un processeur (ou unité centrale de calcul, UCC ; en anglais central processing unit, CPU) est un composant présent dans de nombreux dispositifs électroniques qui exécute les instructions machine des programmes informatiques. Avec la mémoire, c'est notamment l'une des fonctions qui existent depuis les premiers ordinateurs. Un processeur construit en un seul circuit intégré est un microprocesseur.