3D displayA 3D display is a display device capable of conveying depth to the viewer. Many 3D displays are stereoscopic displays, which produce a basic 3D effect by means of stereopsis, but can cause eye strain and visual fatigue. Newer 3D displays such as holographic and light field displays produce a more realistic 3D effect by combining stereopsis and accurate focal length for the displayed content. Newer 3D displays in this manner cause less visual fatigue than classical stereoscopic displays.
Stratégie d'évaluation (informatique)Un langage de programmation utilise une stratégie d'évaluation pour déterminer « quand » évaluer les arguments à l'appel d'une fonction (ou encore, opération, méthode) et « comment » passer les arguments à la fonction. Par exemple, dans l'appel par valeur, les arguments doivent être évalués avant d'être passés à la fonction. La stratégie d'évaluation d'un langage de programmation est spécifiée par la définition du langage même. En pratique, la plupart des langages de programmation (Java, C...
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Partie denseEn topologie, une partie dense d'un espace topologique est un sous-ensemble permettant d'approcher tous les éléments de l'espace englobant. La notion s'oppose ainsi à celle de partie nulle part dense. La densité d'une partie permet parfois d'étendre la démonstration d'une propriété ou la définition d'une application par continuité. Soient X un espace topologique et A une partie de X.
Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Ensemble videvignette|Notation de l'ensemble vide. En mathématiques, l'ensemble vide est l'ensemble ne contenant aucun élément. L'ensemble vide peut être noté d'un O barré, à savoir ∅ ou simplement { }, qui est une paire d'accolades ne contenant qu'une espace, pour représenter un ensemble qui ne contient rien. La notation ∅ a été introduite par André Weil, dans le cadre de l'institution de notations par le groupe Bourbaki. Von Neumann dans son article de 1923, qui est l'une des premières références qui l'aborde, le note O.
Évaluation paresseuseL’évaluation paresseuse (), appelée aussi appel par nécessité ou évaluation retardée est une technique d'implémentation des programmes récursifs pour laquelle l'évaluation d'un paramètre de fonction ne se fait pas avant que les résultats de cette évaluation ne soient réellement nécessaires. Ces résultats, une fois calculés, sont préservés pour des réutilisations ultérieures. Dans un langage comme Haskell, l'évaluation est paresseuse par défaut.
EvaluationIn common usage, evaluation is a systematic determination and assessment of a subject's merit, worth and significance, using criteria governed by a set of standards. It can assist an organization, program, design, project or any other intervention or initiative to assess any aim, realisable concept/proposal, or any alternative, to help in decision-making; or to ascertain the degree of achievement or value in regard to the aim and objectives and results of any such action that has been completed.
Ensemble nulle part denseEn topologie, un ensemble est nulle part dense ou rare s'il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous-ensemble A d'un espace topologique X est nulle part dense dans X si presque aucun point de X ne peut être « approché » par des points de A. Soit X un espace topologique et A un sous-ensemble de X.
Théorie des ensembles approximatifsThéorie des ensembles approximatifs – est un formalisme mathématique proposé en 1982 par le professeur Zdzisław Pawlak. Elle généralise la théorie des ensembles classique. Un ensemble approximatif (anglais : rough set) est un objet mathématique basé sur la logique 3 états. Dans sa première définition, un ensemble approximatif est une paire de deux ensembles : une approximation inférieure et une approximation supérieure. Il existe également un type d'ensembles approximatifs défini par une paire d'ensembles flous (anglais : fuzzy set).