SubtractorIn electronics, a subtractor – a digital circuit that performs subtraction of numbers – can be designed using the same approach as that of an adder. The binary subtraction process is summarized below. As with an adder, in the general case of calculations on multi-bit numbers, three bits are involved in performing the subtraction for each bit of the difference: the minuend (), subtrahend (), and a borrow in from the previous (less significant) bit order position (). The outputs are the difference bit () and borrow bit .
MultiplieurEn électronique analogique, un multiplieur est un circuit dont le signal de sortie est le produit de la valeur instantanée de ses signaux d'entrée. En électronique numérique, un multiplieur est un circuit électronique effectuant une multiplication. Des multiplieurs sont intégrés dans la plupart des processeurs actuels, tant pour réaliser des multiplications entre nombres entiers qu'entre nombres représentés en virgule flottante. En électronique analogique, un multiplieur est un circuit dont le signal de sortie est le produit de la valeur instantanée de ses signaux d'entrée.
Multiplieur-accumulateurEn programmation, à l'origine en traitement numérique du signal, l'opération combinée multiply–accumulate (MAC) ou multiply-add (MAD) est une instruction-machine qui calcule le produit de deux nombres et agrège le résultat au contenu d'un accumulateur. Le circuit électronique qui réalise cette opération est appelé « multiplieur-accumulateur » ; l'opération elle-même est souvent abrégée en MAC ou « opération MAC.
Electronic circuit simulationElectronic circuit simulation uses mathematical models to replicate the behavior of an actual electronic device or circuit. Simulation software allows for modeling of circuit operation and is an invaluable analysis tool. Due to its highly accurate modeling capability, many colleges and universities use this type of software for the teaching of electronics technician and electronics engineering programs. Electronics simulation software engages its users by integrating them into the learning experience.
Arithmétique de RobinsonL'arithmétique de Robinson introduite en 1950 par Raphael Robinson est une théorie du premier ordre pour l'arithmétique des entiers naturels, qui est finiment axiomatisable. Ses axiomes sont essentiellement ceux de l'arithmétique de Peano sans le schéma d'axiomes de récurrence. L'arithmétique de Robinson suffit pour le théorème d'incomplétude de Gödel-Rosser et pour le théorème de Church (indécidabilité du problème de la décision), au sens où l'arithmétique de Robinson, et même toute théorie axiomatique dans le langage de l'arithmétique qui est récursive et cohérente et qui a pour conséquence les axiomes de l'arithmétique de Robinson, est nécessairement incomplète et indécidable.
System busA system bus is a single computer bus that connects the major components of a computer system, combining the functions of a data bus to carry information, an address bus to determine where it should be sent or read from, and a control bus to determine its operation. The technique was developed to reduce costs and improve modularity, and although popular in the 1970s and 1980s, more modern computers use a variety of separate buses adapted to more specific needs.
Arithmétique élémentaireL’arithmétique élémentaire regroupe les rudiments de la connaissance des nombres telle qu'elle est présentée dans l'enseignement des mathématiques. Elle commence avec la comptine numérique, autrement dit la suite des premiers entiers à partir de 1, apprise comme une liste ou une récitation et utilisée pour dénombrer de petites quantités. Viennent ensuite les opérations d'addition et de multiplication par le biais des tables d'addition et de multiplication.
Process variation (semiconductor)Process variation is the naturally occurring variation in the attributes of transistors (length, widths, oxide thickness) when integrated circuits are fabricated. The amount of process variation becomes particularly pronounced at smaller process nodes (
Ordinal arithmeticIn the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations.