Signal-flow graphA signal-flow graph or signal-flowgraph (SFG), invented by Claude Shannon, but often called a Mason graph after Samuel Jefferson Mason who coined the term, is a specialized flow graph, a directed graph in which nodes represent system variables, and branches (edges, arcs, or arrows) represent functional connections between pairs of nodes. Thus, signal-flow graph theory builds on that of directed graphs (also called digraphs), which includes as well that of oriented graphs.
AutomationL'automation consiste à utiliser les services d'un logiciel dans une application informatique. L'automation peut donc être considérée comme une procédure d'automatisation. En informatique musicale, dans un séquenceur, l'automation consiste à programmer des changements de réglages pendant la lecture d'un morceau, comme la variation de volume d'une piste audio. Cette mise en place peut se faire par mimétisme : le logiciel enregistre en temps réel des mouvements venant de l'utilisateur pour les reproduire lors des prochaines exécutions du morceau.
Point d'accumulation (mathématiques)En mathématiques, un point d'accumulation d'une partie A d'un espace topologique E est un point x de E qui peut être « approché » par des points de A au sens où chaque voisinage de x – pour la topologie de E – contient un point de A distinct de x. Un tel point x n'est pas nécessairement un point de A. Ce concept généralise la notion de limite, et permet de définir des notions comme les espaces fermés et l'adhérence. De fait, pour qu'un espace soit fermé, il faut et il suffit qu'il contienne tous ses points d'accumulation.
Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Asymptotic distributionIn mathematics and statistics, an asymptotic distribution is a probability distribution that is in a sense the "limiting" distribution of a sequence of distributions. One of the main uses of the idea of an asymptotic distribution is in providing approximations to the cumulative distribution functions of statistical estimators. A sequence of distributions corresponds to a sequence of random variables Zi for i = 1, 2, ..., I .
Indice boursierUn indice boursier représente le taux de croissance, entre deux dates, de la juste valeur d'un portefeuille théorique d'actions cotées sur les marchés organisés appartenant à une liste d'entreprises sélectionnée par des choix raisonnés. Un indice boursier désigne, quasiment toujours depuis la fin du , un nombre dont le taux de croissance, entre deux dates, est celui de la juste valeur d'un portefeuille théorique d'actions cotées sur les marchés organisés appartenant à une liste d'entreprises sélectionnée par des choix raisonnés.
Point (géométrie)thumb|Points dans un plan euclidien. En géométrie, un point est le plus petit élément constitutif de l'espace géométrique, c'est-à-dire un lieu au sein duquel on ne peut distinguer aucun autre lieu que lui-même. géométrie euclidienne Le point, selon Euclide, est . On peut aussi dire plus simplement qu'un point ne désigne pas un objet mais un emplacement. Il n'a donc aucune dimension, longueur, largeur, épaisseur, volume ou aire. Sa seule caractéristique est sa position. On dit parfois qu'il est « infiniment petit ».
Convergence de variables aléatoiresDans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).
Fonds indicielUn fonds indiciel (index fund ou tracker en anglais) est un fonds de placement qui cherche à reproduire dans la mesure du possible le rendement d'un indice boursier précis, comme le CAC 40 ou le S&P 500. La gestion passive de tels fonds entraîne des frais de gestion généralement moins élevés que les fonds dits traditionnels (généralement moins de 1 %). En France, ces fonds gérés par des organismes de placement collectif en valeurs mobilières sont également désignés par OPCVM indiciels.