In mathematics and statistics, an asymptotic distribution is a probability distribution that is in a sense the "limiting" distribution of a sequence of distributions. One of the main uses of the idea of an asymptotic distribution is in providing approximations to the cumulative distribution functions of statistical estimators.
A sequence of distributions corresponds to a sequence of random variables Zi for i = 1, 2, ..., I . In the simplest case, an asymptotic distribution exists if the probability distribution of Zi converges to a probability distribution (the asymptotic distribution) as i increases: see convergence in distribution. A special case of an asymptotic distribution is when the sequence of random variables is always zero or Zi = 0 as i approaches infinity. Here the asymptotic distribution is a degenerate distribution, corresponding to the value zero.
However, the most usual sense in which the term asymptotic distribution is used arises where the random variables Zi are modified by two sequences of non-random values. Thus if
converges in distribution to a non-degenerate distribution for two sequences {ai} and {bi} then Zi is said to have that distribution as its asymptotic distribution. If the distribution function of the asymptotic distribution is F then, for large n, the following approximations hold
If an asymptotic distribution exists, it is not necessarily true that any one outcome of the sequence of random variables is a convergent sequence of numbers. It is the sequence of probability distributions that converges.
Central limit theorem
Perhaps the most common distribution to arise as an asymptotic distribution is the normal distribution. In particular, the central limit theorem provides an example where the asymptotic distribution is the normal distribution.
Central limit theorem
Suppose is a sequence of i.i.d. random variables with and . Let be the average of . Then as approaches infinity, the random variables converge in distribution to a normal :
The central limit theorem gives only an asymptotic distribution.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Large-scale time series analysis is performed by a new statistical tool that is superior to other estimators of complex state-space models. The identified stochastic dependences can be used for sensor
thumb|upright=2|La loi normale, souvent appelée la « courbe en cloche ». Le théorème central limite (aussi appelé théorème limite central, théorème de la limite centrale ou théorème de la limite centrée) établit la convergence en loi de la somme d'une suite de variables aléatoires vers la loi normale. Intuitivement, ce résultat affirme qu'une somme de variables aléatoires indépendantes et identiquement distribuées tend (le plus souvent) vers une variable aléatoire gaussienne.
Dans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).
En statistique, un estimateur est une fonction permettant d'estimer un moment d'une loi de probabilité (comme son espérance ou sa variance). Il peut par exemple servir à estimer certaines caractéristiques d'une population totale à partir de données obtenues sur un échantillon comme lors d'un sondage. La définition et l'utilisation de tels estimateurs constitue la statistique inférentielle. La qualité des estimateurs s'exprime par leur convergence, leur biais, leur efficacité et leur robustesse.
Explorer des modèles linéaires généralisés pour les données non gaussiennes, couvrant l'interprétation de la fonction de liaison naturelle, la normalité asymptotique MLE, les mesures de déviance, les résidus et la régression logistique.
Explore l'échangeabilité, les résumés statistiques pour les réseaux, les questions d'invariance et le théorème Poisson Limit dans les statistiques des réseaux.
We study the behaviour of a natural measure defined on the leaves of the genealogical tree of some branching processes, namely self-similar growth-fragmentation processes. Each particle, or cell, is attributed a positive mass that evolves in continuous tim ...
We provide a computationally and statistically efficient method for estimating the parameters of a stochastic covariance model observed on a regular spatial grid in any number of dimensions. Our proposed method, which we call the Debiased Spatial Whittle l ...
The aim of this paper is to define a nonlinear least squares estimator for the spectral parameters of a spherical autoregressive process of order 1 in a parametric setting. Furthermore, we investigate on its asymptotic properties, such as weak consistency ...