Lambda cubethumb|Le lambda-cube. Initialement proposé par Henk Barendregt, le -cube permet de visualiser les différentes dimensions pour lesquelles le calcul des constructions apporte une généralisation par rapport au lambda-calcul simplement typé où un terme ne peut dépendre que d'un autre terme. Chaque axe représente une nouvelle forme d'abstraction : Terme dépendant de type : le polymorphisme ; Type dépendant de type : présence d'opérateurs de types ; Type dépendant de terme. Catégorie:Calculabilité Catégorie:Théor
Lambda-calculLe lambda-calcul (ou λ-calcul) est un système formel inventé par Alonzo Church dans les années 1930, qui fonde les concepts de fonction et d'application. On y manipule des expressions appelées λ-expressions, où la lettre grecque λ est utilisée pour lier une variable. Par exemple, si M est une λ-expression, λx.M est aussi une λ-expression et représente la fonction qui à x associe M. Le λ-calcul a été le premier formalisme pour définir et caractériser les fonctions récursives : il a donc une grande importance dans la théorie de la calculabilité, à l'égal des machines de Turing et du modèle de Herbrand-Gödel.
Calcul des constructionsLe calcul des constructions (CoC de l'anglais calculus of constructions) est un lambda-calcul typé d'ordre supérieur dans lequel les types sont des valeurs de première classe. Il est par conséquent possible, dans le CoC, de définir des fonctions qui vont des entiers vers les entiers, mais aussi des entiers vers les types ou des types vers les types. Le CoC est fortement normalisant, bien que, d'après le théorème d'incomplétude de Gödel, il soit impossible de démontrer cette propriété dans le CoC lui-même, puisqu'elle implique sa cohérence.
Primitive data typeIn computer science, primitive data types are a set of basic data types from which all other data types are constructed. Specifically it often refers to the limited set of data representations in use by a particular processor, which all compiled programs must use. Most processors support a similar set of primitive data types, although the specific representations vary. More generally, "primitive data types" may refer to the standard data types built into a programming language (built-in types).
Système FLe est un formalisme logique qui permet d'exprimer de façon très riche et très rigoureuse des fonctions et d'y démontrer formellement des propriétés difficiles. Plus précisément, le (également connu sous le nom de lambda-calcul polymorphe ou de lambda-calcul du second ordre) est une extension du lambda-calcul simplement typé introduite indépendamment par le logicien Jean-Yves Girard et par l'informaticien John C. Reynolds. Ce système se distingue du lambda-calcul simplement typé par l'existence d'une quantification universelle sur les types qui permet d'exprimer du polymorphisme.
Eclipse (projet)Eclipse est un projet, décliné et organisé en un ensemble de sous-projets de développements logiciels, de la fondation Eclipse visant à développer un environnement de production de logiciels libre qui soit extensible, universel et polyvalent, en s'appuyant principalement sur Java. Son objectif est de produire et fournir des outils pour la réalisation de logiciels, englobant les activités de programmation (notamment environnement de développement intégré et frameworks) mais aussi d'AGL recouvrant modélisation, conception, test, gestion de configuration, reporting.
Conversion de typeEn informatique la conversion de type, le transtypage ou la coercition (cast en anglais) est le fait de convertir une valeur d'un type (source) dans un autre (cible). On distingue trois formes de conversion (dont un seul mérite vraiment le nom de conversion) suivant la relation de sous-typage existant entre les types source et cible : la conversion entre types incomparables ; la coercition ascendante (transtypage vers le haut) ; la coercition descendante (transtypage vers le bas). C'est la coercition la plus ancienne historiquement.
Type algébrique de donnéesUn type algébrique est une forme de type de données composite, qui combine les fonctionnalités des types produits (n‐uplets ou enregistrements) et des types sommes (union disjointe). Combinée à la récursivité, elle permet d’exprimer les données structurées telles que les listes et les arbres. Le type produit de deux types A et B est l’analogue en théorie des types du produit cartésien ensembliste et est noté A × B. C’est le type des couples dont la première composante est de type A et la seconde de type B.
Mise en œuvreLa mise en œuvre est le fait de mettre en place un projet. En ingénierie et plus particulièrement en informatique, la mise en œuvre désigne la création d’un produit fini à partir d’un document de conception, d’un document de spécification, voire directement depuis une version originelle ou un cahier des charges. L’utilisation de l’anglicisme « implémentation », de l'anglais to implement, est courante (et acceptée).
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.