Cinétique chimiqueLa cinétique chimique est l'étude de la vitesse des réactions chimiques. Sur le plan disciplinaire, elle fait partie de la chimie physique. Certaines réactions sont totales et très rapides, voire instantanées, comme les explosions. D'autres sont tellement lentes qu'elles durent plusieurs années (comme la formation de la rouille), voire plusieurs siècles (comme la formation du charbon ou du pétrole). Certaines sont même tellement lentes que les réactifs de départ sont considérés comme stables, par exemple la transformation du diamant en carbone graphite.
Épitaxie par jet moléculaireL'épitaxie par jets moléculaires (ou MBE pour Molecular Beam Epitaxy) est une technique consistant à envoyer un ou plusieurs jets moléculaires vers un substrat préalablement choisi pour réaliser une croissance épitaxiale. Elle permet de faire croître des échantillons nanostructurés de plusieurs à une vitesse d'environ une monocouche atomique par seconde.
État de transitionUn état de transition est, dans une réaction chimique, une configuration particulière le long d'une coordonnée de réaction. Il est défini comme un état correspondant à une énergie maximale le long de cette coordonnée. En ce point, si l'on postule une réaction parfaitement irréversible, les espèces réagissant iront toujours vers la formation des produits. Bien que cette notion soit extensible à toute réaction ou transition physico-chimique, elle est utilisée essentiellement en chimie moléculaire.
Théorie de l'état de transitionthumb|Figure 1 : diagramme de réaction pour une réaction de substitution nucléophile bimoléculaire (SN2) entre le bromométhane et l'anion hydroxyde|400px La théorie de l'état de transition (en anglais transition state theory - TST) a pour objectif d'expliquer les cinétiques de réaction pour des réactions chimiques élémentaires. Cette théorie postule l'existence d'un genre spécial d'équilibre chimique, le quasi-équilibre, entre les réactifs et un complexe de transition activé.
MonocristalUn monocristal ou matériau monocristallin est un matériau solide constitué d'un unique cristal, formé à partir d’un seul germe. À l'opposé, un polycristal ou matériau polycristallin, est constitué lui d'une multitude de petits cristaux de taille et d'orientation variées. De façon exceptionnelle, on peut en trouver dans la nature, pour le béryl, le quartz, le gypse ; ainsi pour ce dernier la mine de Naica (Mexique) comporte des monocristaux de gypse atteignant treize mètres.
ÉpitaxieL'épitaxie est une technique de croissance orientée, l'un par rapport à l'autre, de deux cristaux possédant un certain nombre d'éléments de symétrie communs dans leurs réseaux cristallins. On distingue l'homo-épitaxie, qui consiste à faire croître un cristal sur un cristal de nature chimique identique, et l'hétéro-épitaxie, dans laquelle les deux cristaux sont de natures chimiques différentes. Étymologiquement, « épi » en grec signifie « sur » et « taxis », « arrangement ».
Épitaxie en phase vapeur aux organométalliquesL'épitaxie en phase vapeur aux organométalliques (EPVOM, aussi connue sous les acronymes anglophones MOVPE — metalorganic vapor phase epitaxy ou MOCVD — metalorganic chemical vapor deposition, terme plus général) est une technique de croissance cristalline dans laquelle les éléments à déposer, sous forme d'organométalliques ou d'hydrures, sont amenés vers le substrat monocristallin par un gaz vecteur. Cette technique de croissance est particulièrement prisée dans l'industrie des semi-conducteurs III-V en raison de la bonne reproductibilité et des fortes vitesses de croissance accessibles.
Laser-heated pedestal growthLaser-heated pedestal growth (LHPG) or laser floating zone (LFZ) is a crystal growth technique. A narrow region of a crystal is melted with a powerful CO2 or YAG laser. The laser and hence the floating zone, is moved along the crystal. The molten region melts impure solid at its forward edge and leaves a wake of purer material solidified behind it. This technique for growing crystals from the melt (liquid/solid phase transition) is used in materials research.
NanofilUn nanofil est une nanostructure, dont le diamètre est exprimé en nanomètre, donc en principe de 1 à 999 nanomètres. Pour plus de simplicité, on tolère un certain débordement dans ces dimensions. Alternativement, les nanofils peuvent être définis comme des structures qui ont une épaisseur ou un diamètre définis, mais d'une longueur quelconque. À ces échelles les effets quantiques sont importants - d'où l'utilisation du terme de « fils quantiques ».
Système complexe adaptatifUn système complexe adaptatif ou système complexe auto-adaptatif est l'ensemble des cas particuliers d'un système complexe capable de s'adapter à son environnement par des expériences d'apprentissage. Le terme anglais complex adaptive systems (CAS) a été introduit par l'Institut interdisciplinaire de Santa Fe notamment par John H. Holland et Murray Gell-Mann. En 1962, Vero Copner Wynne-Edwards a observé la sélection de groupe à l’œuvre dans les communautés d’oiseaux sauvages.