AcoustiqueL’acoustique est la science du son. La discipline a étendu son domaine à l'étude de toute onde mécanique dans tout fluide, où un ébranlement se propage presque exclusivement en onde longitudinale ; le calcul de ces ondes selon les caractéristiques du milieu s'applique aussi bien pour l'air aux fréquences audibles que pour tout milieu fluide homogène et toute fréquence, y compris infrasons et ultrasons. On parle de vibroacoustique quand l'étude se porte sur l'interaction entre solides, où existent des ondes transversales, et fluides.
Équations de Maxwellvignette|Plaque représentant les équations de Maxwell au pied de la statue en hommage à James Clerk Maxwell d'Edimbourg. Les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz, sont des lois fondamentales de la physique. Elles constituent, avec l'expression de la force électromagnétique de Lorentz, les postulats de base de l'électromagnétisme. Ces équations traduisent sous forme locale différents théorèmes (Gauss, Ampère, Faraday) qui régissaient l'électromagnétisme avant que Maxwell ne les réunisse sous forme d'équations intégrales.
Acoustique architecturalevignette|240x240px|Le théâtre d’Épidaure renommé pour son acoustique. L'acoustique architecturale est le domaine scientifique et technologique qui vise à comprendre et maîtriser la propagation des sons dans les bâtiments. L'acoustique architecturale domine la construction des salles de spectacle et des studios d'enregistrement ; elle peut participer à la conception d'autres bâtiments comme les lieux de travail, les locaux de restauration collective, les halls de gares et d'aérogares, les habitations, pour lesquels la qualité acoustique peut avoir d'importantes implications en matière de bien-être et de santé.
Équation du mouvementL'équation du mouvement est une équation mathématique décrivant le mouvement d'un objet physique. En général, l'équation du mouvement comprend l'accélération de l’objet en fonction de sa position, de sa vitesse, de sa masse et de toutes variables affectant l'une de celles-ci. Cette équation est surtout utilisée en mécanique classique et est normalement représentée sous la forme de coordonnées sphériques, coordonnées cylindriques ou coordonnées cartésiennes et respecte les lois du mouvement de Newton.
Acoustique musicaleL'acoustique musicale est le domaine de l'acoustique consacré à l'étude des sons musicaux et leur mode de production par les instruments de musique et la voix. Née du souci de relier la tradition musicale, principalement de la musique savante, à l'esprit scientifique, l'acoustique musicale fut l'un des premiers champs d'investigation de l'acoustique.
Acoustique sous-marinevignette|Simulation acoustique dans un environnement océanique simple. L'acoustique sous-marine est l'étude de la propagation du son dans l'eau et de l'interaction des ondes mécaniques constituant le son avec l'eau, son contenu et ses frontières. L'eau peut être l'océan, un lac, une rivière ou un réservoir. Les fréquences typiques de l'acoustique sous-marine sont comprises entre 10 Hz et 1 MHz. La propagation du son dans l'océan à des fréquences inférieures à se poursuit dans les fonds marins, tandis que les fréquences supérieures à sont rarement utilisées car elles sont absorbées très rapidement.
Acoustique non linéaireL’acoustique non linéaire est une technique qui permet de caractériser l'état d'intégrité et « la santé » de structures ou de matériaux, sans les dégrader, soit au cours de la production, soit en cours d'utilisation, soit dans le cadre de maintenance. L’acoustique non linéaire de par sa très haute sensibilité à l’endommagement redondant ou limité des matériaux semble être une récente voie amplement efficace pour le contrôle et l‘évaluation non destructifs.
Équation d'Einsteinvignette|Équation sur un mur à Leyde. L’'équation d'Einstein ou équation de champ d'Einstein' (en anglais, Einstein field equation ou EFE), publiée par Albert Einstein, pour la première fois le , est l'équation aux dérivées partielles principale de la relativité générale. C'est une équation dynamique qui décrit comment la matière et l'énergie modifient la géométrie de l'espace-temps. Cette courbure de la géométrie autour d'une source de matière est alors interprétée comme le champ gravitationnel de cette source.
Houle trochoïdalevignette|Profil de houle trochoïdale (en bleu foncé) se propageant vers la droite. Les particules de la surface libre décrivent des cercles (en cyan), et l'hodographe des particules (en noir) est la ligne rouge. La hauteur des vagues est notée , la longueur d'onde et la vitesse de phase . En dynamique des fluides, la houle trochoïdale est une solution exacte des équations d'Euler. Découverte en 1802 par le baron von Gerstner, elle décrit les ondes de gravité de forme périodique qui se propagent à la surface d'un fluide incompressible de profondeur infinie, en régime permanent.
FDTDFDTD est l'acronyme de l'expression anglaise Finite Difference Time Domain. C'est une méthode de calcul de différences finies dans le domaine temporel, qui permet de résoudre des équations différentielles dépendantes du temps. Cette méthode est couramment utilisée en électromagnétisme pour résoudre les équations de Maxwell. Cette méthode a été proposée par Kane S. Yee en 1966. Différences finies Méthode des différences finies Kane Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, 14, 1966, S.