GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Géométrie non euclidienneLa géométrie non euclidienne (GNE) est, en mathématiques, une théorie géométrique ayant recours aux axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues initialement de la volonté de démontrer la proposition du cinquième postulat, qui apparaissait peu satisfaisant en tant que postulat car trop complexe et peut-être redondant avec les autres postulats).
Normal schemeIn algebraic geometry, an algebraic variety or scheme X is normal if it is normal at every point, meaning that the local ring at the point is an integrally closed domain. An affine variety X (understood to be irreducible) is normal if and only if the ring O(X) of regular functions on X is an integrally closed domain. A variety X over a field is normal if and only if every finite birational morphism from any variety Y to X is an isomorphism. Normal varieties were introduced by .
FDTDFDTD est l'acronyme de l'expression anglaise Finite Difference Time Domain. C'est une méthode de calcul de différences finies dans le domaine temporel, qui permet de résoudre des équations différentielles dépendantes du temps. Cette méthode est couramment utilisée en électromagnétisme pour résoudre les équations de Maxwell. Cette méthode a été proposée par Kane S. Yee en 1966. Différences finies Méthode des différences finies Kane Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, 14, 1966, S.
Variété projectiveEn géométrie algébrique, les variétés projectives forment une classe importante de variétés. Elles vérifient des propriétés de compacité et des propriétés de finitude. C'est l'objet central de la géométrie algébrique globale. Sur un corps algébriquement clos, les points d'une variété projective sont les points d'un ensemble algébrique projectif. On fixe un corps (commutatif) k. Algèbre homogène. Soit B le quotient de par un idéal homogène ( idéal engendré par des polynômes homogènes).
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Système de positionnement par satellitesUn système de positionnement par satellites également désigné sous le sigle GNSS (pour Géolocalisation et Navigation par un Système de Satellites) est un ensemble de composants reposant sur une constellation de satellites artificiels permettant de fournir à un utilisateur par l’intermédiaire d'un récepteur portable de petite taille sa position 3D, sa vitesse 3D et l'heure. Cette catégorie de système de géopositionnement se caractérise par une précision métrique, sa couverture mondiale et la compacité des terminaux, mais également par sa sensibilité aux obstacles présents entre le terminal récepteur et les satellites.
Fermionic fieldIn quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields. The most prominent example of a fermionic field is the Dirac field, which describes fermions with spin-1/2: electrons, protons, quarks, etc. The Dirac field can be described as either a 4-component spinor or as a pair of 2-component Weyl spinors.
Matériauvignette|Grandes classes de matériaux. Les matériaux minéraux sont des roches, des céramiques ou des verres. Les matériaux métalliques sont des métaux ou des alliages. Un matériau est toute matière utilisée pour réaliser un objet au sens large. Ce dernier est souvent une pièce d'un sous-ensemble. C'est donc une matière sélectionnée à l'origine en raison de propriétés particulières et mise en œuvre en vue d'un usage spécifique.
Horloge atomiquevignette|Horloge atomique commerciale à césium ayant servi à réaliser le temps légal français dans les années 1980 et comme référence pour l'horloge parlante. vignette|Horloge atomique à césium, vue interne. Une horloge atomique est une horloge qui utilise la pérennité et l'immuabilité de la fréquence du rayonnement électromagnétique émis par un électron lors du passage d'un niveau d'énergie à un autre pour assurer l'exactitude et la stabilité du signal oscillant qu'elle produit.