Matrice creuseDans la discipline de l'analyse numérique des mathématiques, une matrice creuse est une matrice contenant beaucoup de zéros. Conceptuellement, les matrices creuses correspondent aux systèmes qui sont peu couplés. Si on considère une ligne de balles dont chacune est reliée à ses voisines directes par des élastiques, ce système serait représenté par une matrice creuse. Au contraire, si chaque balle de la ligne est reliée à toutes les autres balles, ce système serait représenté par une matrice dense.
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Fonction mesurableSoient E et F des espaces mesurables munis de leurs tribus respectives E et F. Une fonction f : E → F est dite (E, F)-mesurable si la par f de la tribu F est incluse dans E, c'est-à-dire si : L'identité, la composée de deux fonctions mesurables, sont mesurables. Les fonctions mesurables fournissent donc à la classe des espaces mesurables une structure de catégorie. Si F est l'ensemble des réels et si F est sa tribu borélienne, on dira simplement que f est une fonction mesurable sur (E, E).
Diagonale principaleEn algèbre linéaire, la diagonale principale d'une matrice carrée est la diagonale qui descend du coin en haut à gauche jusqu'au coin en bas à droite. Par exemple, la matrice carrée d'ordre 3 qui suit a des 1 sur sa diagonale principale : Il s'agit en particulier de la matrice identité d'ordre 3. Ici, la diagonale principale est composée de 1 et on a également 2 diagonales « secondaires » de part et d'autre de la diagonale principale, composées par des 2 et l'autre par des 3.
Fonction C∞ à support compactEn mathématiques, une fonction C à support compact (également appelée fonction test) est une fonction infiniment dérivable dont le support est compact. Ces fonctions sont au cœur de la théorie des distributions, puisque ces dernières sont construites comme éléments du dual topologique de l'espace des fonctions tests. Les fonctions C à support compact sont également utilisées pour construire des suites régularisantes et des partitions de l'unité de classe C.