Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Henri-Léon LebesgueHenri-Léon Lebesgue (1875-1941), plus connu sous le nom de Henri Lebesgue, né à Beauvais, est l'un des grands mathématiciens français de la première moitié du . Il est reconnu pour sa théorie d'intégration publiée initialement dans sa thèse Intégrale, longueur, aire, soutenue à la Faculté des sciences de Paris en 1902. Le père de Lebesgue, qui était ouvrier typographe, et ses deux sœurs aînées moururent de tuberculose alors qu'il avait trois ans. Ensuite, sa mère a travaillé pour qu'il puisse faire des études.
Méthode de SimpsonEn analyse numérique, la méthode de Simpson, du nom de Thomas Simpson, est une technique de calcul numérique d'une intégrale, c'est-à-dire le calcul approché de : Cette méthode utilise l'approximation d'ordre 2 de f par un polynôme quadratique P prenant les mêmes valeurs que f aux points d'abscisse a, b et m = . Pour déterminer l'expression de cette parabole (polynôme de degré 2), on utilise l'interpolation lagrangienne.
Méthode sans maillageIn the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort.
Extrapolation (mathématiques)En mathématiques, l'extrapolation est le calcul d'un point d'une courbe dont on ne dispose pas d'équation, à partir d'autres points, lorsque l'abscisse du point à calculer est au-dessus du maximum ou en dessous du minimum des points connus. En dehors de cette particularité, les méthodes sont les mêmes que pour l'interpolation. C'est, d'autre part, une méthode développée par Norbert Wiener en traitement du signal pour la prédiction. Le choix de la méthode d'extrapolation dépend de la connaissance a priori de la méthode de génération des données.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
SmoothnessIn mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or function).
Théorème de différentiation de LebesgueEn mathématiques, et plus particulièrement dans la théorie de l'intégration, le théorème de différentiation de Lebesgue énonce que sous certaines conditions, on peut retrouver une fonction de R dans R en « dérivant son intégrale », mais il faut avant tout définir ce qu'est la « dérivée d'une intégrale » lorsque l'on intègre sur une partie de R. Dès le début de la théorie de l'intégration, la question s'est posée de savoir sous quelles conditions la dérivation et l'intégration sont des applications réciproques l'une de l'autre.
Fonction régulière non analytiqueEn mathématiques, les fonctions régulières (i.e. les fonctions indéfiniment dérivables) et les fonctions analytiques sont deux types courants et d'importance parmi les fonctions. Si on peut prouver que toute fonction analytique réelle est régulière, la réciproque est fausse. Une des applications des fonctions régulières à support compact est la construction de fonctions régularisantes, qui sont utilisées dans la théorie des fonctions généralisées, telle la théorie des distributions de Laurent Schwartz.
Produit matricielLe produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).