Nombre premiervignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.
Corps totalement réelEn mathématiques et en théorie des nombres, un corps de nombres K est dit totalement réel si pour chaque plongement de K dans l'ensemble des nombres complexes, l' se trouve dans l'ensemble des nombres réels. De manière équivalente, K est engendré sur Q par une racine d'un polynôme à coefficients entiers dont toutes les racines sont réelles, ou bien encore le produit tensoriel K⊗R est un produit d'exemplaires de R. La notion de signature d'un corps de nombres permet de mesurer plus précisément à quel point un corps est loin d'être totalement réel.
Extension abélienneEn algèbre générale, plus précisément en théorie de Galois, une extension abélienne est une extension de Galois dont le groupe de Galois est abélien. Lorsque ce groupe est cyclique, l'extension est dite cyclique. Toute extension finie d'un corps fini est une extension cyclique. L'étude de la théorie des corps de classes décrit de façon détaillée toutes les extensions abéliennes dans le cas des corps de nombres, et des corps de fonctions de courbes algébriques sur des corps finis, ainsi que dans le cas des corps locaux (Théorie du corps de classes local).
Nombre parfaitEn arithmétique, un nombre parfait est un entier naturel égal à la moitié de la somme de ses diviseurs ou encore à la somme de ses diviseurs stricts. Plus formellement, un nombre parfait n est un entier tel que σ(n) = 2n où σ(n) est la somme des diviseurs positifs de n. Ainsi 6 est un nombre parfait car ses diviseurs entiers sont 1, 2, 3 et 6, et il vérifie bien 2 × 6 = 12 = 1 + 2 + 3 + 6, ou encore 6 = 1 + 2 + 3. Voir la . Dans le Livre IX de ses Éléments, Euclide, au , a démontré que si M = 2 − 1 est premier, alors M(M + 1)/2 = 2(2 – 1) est parfait.
Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Groupe abélienEn mathématiques, plus précisément en algèbre, un groupe abélien (du nom de Niels Abel), ou groupe commutatif, est un groupe dont la loi de composition interne est commutative. Vu autrement, un groupe commutatif peut aussi être défini comme un module sur l'anneau commutatif des entiers relatifs ; l'étude des groupes abéliens apparaît alors comme un cas particulier de la théorie des modules. On sait classifier de façon simple et explicite les groupes abéliens de type fini à isomorphisme près, et en particulier décrire les groupes abéliens finis.
Nombre de Fermatthumb|Le mathématicien français Pierre de Fermat (1601-1665) étudia les propriétés des nombres portant maintenant son nom. Un nombre de Fermat est un nombre qui peut s'écrire sous la forme 22n + 1, avec n entier naturel. Le n-ième nombre de Fermat, 22n + 1, est noté Fn. Ces nombres doivent leur nom à Pierre de Fermat, qui émit la conjecture que tous ces nombres étaient premiers. Cette conjecture se révéla fausse, F5 étant composé, de même que tous les suivants jusqu'à F32.
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Cubic fieldIn mathematics, specifically the area of algebraic number theory, a cubic field is an algebraic number field of degree three. If K is a field extension of the rational numbers Q of degree [K:Q] = 3, then K is called a cubic field. Any such field is isomorphic to a field of the form where f is an irreducible cubic polynomial with coefficients in Q. If f has three real roots, then K is called a totally real cubic field and it is an example of a totally real field. If, on the other hand, f has a non-real root, then K is called a complex cubic field.
Inégalité de ChernoffEn théorie des probabilités, l'inégalité de Chernoff permet de majorer la queue d'une loi de probabilité, c'est-à-dire qu'elle donne une valeur maximale de la probabilité qu'une variable aléatoire dépasse une valeur fixée. On parle également de borne de Chernoff. Elle est nommée ainsi en l'honneur du mathématicien Herman Chernoff. Elle est comparable à l'inégalité de Markov mais donne une borne exponentielle. Il existe de nombreux énoncés, et de nombreux cas particuliers.