Dérive littoralevignette|Diagramme montrant la dérive littorale1=plage 2=mer3=direction du courant côtier 4=vagues incidentes5=jet de rive6=flot de retour. La dérive littorale est le déplacement le long d'un littoral de matières (sédiments, sable) déposées par les vagues, le vent et/ou les courants longitudinaux (en en anglais). Il se distingue du mouvement dans le profil, déplacement transversal (en) assimilé au courant de marée. Si cette dérive peut être calculée par des courantomètres à capteurs de pression, l'enregistrement du déplacement transversal est plus difficile.
Tension superficiellevignette|et aux gerridés de se déplacer à la surface d'une mare. La tension superficielle est un phénomène physico-chimique lié aux interactions moléculaires d'un fluide. Elle résulte de l'augmentation de l'énergie à l'interface entre deux fluides. Le système tend vers un équilibre qui correspond à la configuration de plus basse énergie, il modifie donc sa géométrie pour diminuer l'aire de cette interface. La force qui maintient le système dans cette configuration est la tension superficielle.
Mécanique des fluides numériqueLa mécanique des fluides numérique (MFN), plus souvent désignée par le terme anglais computational fluid dynamics (CFD), consiste à étudier les mouvements d'un fluide, ou leurs effets, par la résolution numérique des équations régissant le fluide. En fonction des approximations choisies, qui sont en général le résultat d'un compromis en termes de besoins de représentation physique par rapport aux ressources de calcul ou de modélisation disponibles, les équations résolues peuvent être les équations d'Euler, les équations de Navier-Stokes, etc.
One-way wave equationA one-way wave equation is a first-order partial differential equation describing one wave traveling in a direction defined by the vector wave velocity. It contrasts with the second-order two-way wave equation describing a standing wavefield resulting from superposition of two waves in opposite directions. In the one-dimensional case, the one-way wave equation allows wave propagation to be calculated without the mathematical complication of solving a 2nd order differential equation.
Équation de SchrödingerL'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.
Hydrodynamique des particules lisséesL'hydrodynamique des particules lissées, en anglais Smoothed particle hydrodynamics (SPH), est une méthode de calcul utilisée pour simuler la mécanique des milieux continus, comme la mécanique des solides ou les écoulements de fluides. Elle a été développée par Gingold, Monaghan et Lucy en 1977, initialement pour des problèmes d'astrophysique. Elle a été utilisée dans de nombreux domaines de recherche, incluant l'astrophysique, la balistique, la volcanologie et océanologie.
Relativistic wave equationsIn physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT.
Electromagnetic wave equationThe electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form: where is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇2 is the Laplace operator.