Système de reconnaissance facialeUn système de reconnaissance faciale est une application logicielle visant à reconnaître automatiquement une personne grâce à son visage. Il s'agit d'un sujet particulièrement étudié en vision par ordinateur, avec de très nombreuses publications et brevets, et des conférences spécialisées. La reconnaissance de visage a de nombreuses applications en vidéosurveillance, biométrie, robotique, indexation d'images et de vidéos, , etc. Ces systèmes sont généralement utilisés à des fins de sécurité pour déverrouiller ordinateur/mobile/console, mais aussi en domotique.
Détection de visagevignette|Détection de visage par la méthode de Viola et Jones. La détection de visage est un domaine de la vision par ordinateur consistant à détecter un visage humain dans une . C'est un cas spécifique de détection d'objet, où l'on cherche à détecter la présence et la localisation précise d'un ou plusieurs visages dans une image. C'est l'un des domaines de la vision par ordinateur parmi les plus étudiés, avec de très nombreuses publications, brevets, et de conférences spécialisées.
Face IDFace ID est un procédé, système de reconnaissance faciale et logiciel propriétaire imaginé et réalisé par Apple. Il est utilisé sur les iPhone X,XS,XS Max,XR,11,11 Pro,11 Pro Max,12 mini,12,12 Pro,12 Pro Max,13 mini,13,13 Pro, 13 Pro Max, 14, 14 Plus, 14 Pro, 14 Pro Max, iPads Pro 2018, iPads Pro 2020 et iPads Pro 2022 et se veut plus fiable que Touch ID. De la même manière que Touch ID, il permet l’authentification des utilisateurs pour le déverrouillage, la possibilité d’effectuer des paiements au sein de magasins d’applications tels sont l'App Store et l'iTunes Store, mais également d’effectuer des achats grâce à Apple Pay.
Reconnaissance de formesthumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.
Emotion recognitionEmotion recognition is the process of identifying human emotion. People vary widely in their accuracy at recognizing the emotions of others. Use of technology to help people with emotion recognition is a relatively nascent research area. Generally, the technology works best if it uses multiple modalities in context. To date, the most work has been conducted on automating the recognition of facial expressions from video, spoken expressions from audio, written expressions from text, and physiology as measured by wearables.
Time–frequency analysisIn signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function whose domain is the real line, obtained from the original via some transform), time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.
Heteroskedasticity-consistent standard errorsThe topic of heteroskedasticity-consistent (HC) standard errors arises in statistics and econometrics in the context of linear regression and time series analysis. These are also known as heteroskedasticity-robust standard errors (or simply robust standard errors), Eicker–Huber–White standard errors (also Huber–White standard errors or White standard errors), to recognize the contributions of Friedhelm Eicker, Peter J. Huber, and Halbert White.
Perception des visagesLa perception des visages désigne le processus cognitif par lequel le cerveau analyse une pour y détecter et identifier un visage. La perception des visages fait appel à une aire cérébrale spécialisée, spécificité du genre humain. Le rôle fondamental que tient le visage dans la communication verbale et non verbale est à l'origine d'une faculté très développée chez l'être humain et les autres primates qui consiste à pouvoir identifier très rapidement un visage dans son environnement et être capable d'en reconnaître l'identité particulière parmi plusieurs centaines d'autres.
Méthode des variables instrumentalesEn statistique et en économétrie, la méthode des variables instrumentales est une méthode permettant d'identifier et d'estimer des relations causales entre des variables. Cette méthode est très souvent utilisée en économétrie. Le modèle de régression linéaire simple fait l'hypothèse que les variables explicatives sont statistiquement indépendantes du terme d'erreur. Par exemple, si on pose le modèle avec x la variable explicative et u le terme d'erreur, on suppose généralement que x est exogène, c'est-à-dire que .
Méthode des moindres carrés ordinairevignette|Graphique d'une régression linéaire La méthode des moindres carrés ordinaire (MCO) est le nom technique de la régression mathématique en statistiques, et plus particulièrement de la régression linéaire. Il s'agit d'un modèle couramment utilisé en économétrie. Il s'agit d'ajuster un nuage de points selon une relation linéaire, prenant la forme de la relation matricielle , où est un terme d'erreur.