Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Discrete-time Fourier transformIn mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Résonance acoustiqueLa résonance acoustique est la tendance d'un système acoustique à absorber plus d'énergie quand la fréquence de ses oscillations arrive à sa fréquence naturelle de vibration (sa fréquence de résonance), donc plus qu'il ne le fait à d'autres fréquences. Un objet résonnant aura probablement plus d'une fréquence de résonance, particulièrement aux harmoniques de la résonance la plus forte. Il vibrera facilement à ces fréquences, et moins fortement à d'autres fréquences.
Caméra multispectraleUne caméra multispectrale est une caméra qui enregistre en une seule prise de vue plusieurs longueurs d'onde qui sont isolées en vue d'analyses spécifiques et de techniques de recombination. Ceci permet une analyse des détails beaucoup plus fine et la visualisation de détails non visibles à l'œil nu. En , cette technique est appliquée pour la première fois à La Joconde et donne lieu à la mise en évidence de détails inconnus ou connus seulement par les historiens de l'art. Ces travaux sont publiés en 2007.
Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Transformation de Fourier discrèteEn mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète.
Spectrométrie d'absorptionLa spectrométrie d'absorption est une méthode de spectroscopie électromagnétique utilisée pour déterminer la concentration et la structure d'une substance en mesurant l'intensité du rayonnement électromagnétique qu'elle absorbe à des longueurs d'onde différentes. La spectroscopie d'absorption peut être atomique ou moléculaire. Comme indiqué dans le tableau précédent, les rayonnements électromagnétiques exploités en spectroscopie d'absorption moléculaire vont de l'ultraviolet jusqu'aux ondes radio : La couleur d'un corps en transmission (transparence) représente sa capacité à absorber certaines longueurs d'onde.
Non-uniform discrete Fourier transformIn applied mathematics, the nonuniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both). It is a generalization of the shifted DFT. It has important applications in signal processing, magnetic resonance imaging, and the numerical solution of partial differential equations.
Mechanical resonanceMechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration (its resonance frequency or resonant frequency) closer than it does other frequencies. It may cause violent swaying motions and potentially catastrophic failure in improperly constructed structures including bridges, buildings and airplanes. This is a phenomenon known as resonance disaster.
Maximum entropy spectral estimationMaximum entropy spectral estimation is a method of spectral density estimation. The goal is to improve the spectral quality based on the principle of maximum entropy. The method is based on choosing the spectrum which corresponds to the most random or the most unpredictable time series whose autocorrelation function agrees with the known values. This assumption, which corresponds to the concept of maximum entropy as used in both statistical mechanics and information theory, is maximally non-committal with regard to the unknown values of the autocorrelation function of the time series.