Prise de décision collectiveLa prise de décision collective (en anglais, collaborative decision making ou CDM) est une situation où des individus sont rassemblés en un groupe pour résoudre des problèmes. Selon l'idée de synergie, les décisions prises collectivement ont tendance à être plus efficaces que les décisions prises individuellement. Cependant, il existe des situations dans lesquelles les décisions prises en groupe aboutissent à un mauvais jugement. En psychologie sociale, la prise de décision collective peut être définie comme .
Estimateur (statistique)En statistique, un estimateur est une fonction permettant d'estimer un moment d'une loi de probabilité (comme son espérance ou sa variance). Il peut par exemple servir à estimer certaines caractéristiques d'une population totale à partir de données obtenues sur un échantillon comme lors d'un sondage. La définition et l'utilisation de tels estimateurs constitue la statistique inférentielle. La qualité des estimateurs s'exprime par leur convergence, leur biais, leur efficacité et leur robustesse.
Calcul réversibleLe calcul réversible est un domaine de l'informatique qui s'intéresse au fait de pouvoir inverser (physiquement ou logiquement) un calcul. Il s'agit d'un domaine transversal, qui a des applications allant de l'architecture matérielle à l'algorithmique répartie en passant par le calcul quantique. D'un point de vue physique, cela implique que ce calcul n'implique pas de phénomène dissipatif conduisant à une augmentation de l'entropie ; bien qu'il soit physiquement impossible d'atteindre cet objectif du fait du second principe de la thermodynamique, s'en rapprocher permet l'augmentation de l'efficacité des processeurs.
Scenario optimizationThe scenario approach or scenario optimization approach is a technique for obtaining solutions to robust optimization and chance-constrained optimization problems based on a sample of the constraints. It also relates to inductive reasoning in modeling and decision-making. The technique has existed for decades as a heuristic approach and has more recently been given a systematic theoretical foundation. In optimization, robustness features translate into constraints that are parameterized by the uncertain elements of the problem.
Problème de la décisionEn logique mathématique, on appelle problème de la décision ou, sous son nom d'origine en allemand, Entscheidungsproblem, le fait de déterminer de façon mécanique (par un algorithme) si un énoncé est un théorème de la logique égalitaire du premier ordre, c’est-à-dire s'il se dérive dans un système de déduction sans autres axiomes que ceux de l'égalité (exemples : système à la Hilbert, calcul des séquents, déduction naturelle).
Bellman equationA Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. It writes the "value" of a decision problem at a certain point in time in terms of the payoff from some initial choices and the "value" of the remaining decision problem that results from those initial choices. This breaks a dynamic optimization problem into a sequence of simpler subproblems, as Bellman's “principle of optimality" prescribes.
Efficacité (statistiques)En statistique, lefficacité est une mesure de la qualité d'un estimateur, d'une expérimentation ou d'un test statistique. Elle permet d'évaluer le nombre d'observations nécessaires pour atteindre un seuil : plus un estimateur est efficace, plus l'échantillon d'observations nécessaire pour atteindre un objectif de précision sera petit. Lefficacité relative de deux procédures est le rapport de leurs efficacités, bien que le concept soit plus utilisé pour le rapport de l'efficacité d'une procédure donnée et d'une procédure théorique optimale.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Verdier dualityIn mathematics, Verdier duality is a cohomological duality in algebraic topology that generalizes Poincaré duality for manifolds. Verdier duality was introduced in 1965 by as an analog for locally compact topological spaces of Alexander Grothendieck's theory of Poincaré duality in étale cohomology for schemes in algebraic geometry. It is thus (together with the said étale theory and for example Grothendieck's coherent duality) one instance of Grothendieck's six operations formalism.
Dualité de PoincaréEn mathématiques, le théorème de de Poincaré est un résultat de base sur la structure des groupes d'homologie et cohomologie des variétés, selon lequel, si M est une variété « fermée » (i.e. compacte et sans bord) orientée de dimension n, le k-ième groupe de cohomologie de M est isomorphe à son (n – k)-ième groupe d'homologie, pour tout entier naturel k ≤ n : La dualité de Poincaré a lieu quel que soit l'anneau de coefficients, dès qu'on a choisi une orientation relativement à cet anneau ; en particulier, puisque toute variété a une unique orientation mod 2, la dualité est vraie mod 2 sans hypothèse d'orientation.