Composite à matrice céramiquethumb|260px|Surface de cassure d'un composite constitué de fibres de SiC et d'une matrice de SiC.thumb|260px|Coussinets céramiques de paliers de diamètres de en CMC pour de grandes pompes. Les composites à matrice céramique ou CMC sont des matériaux composites faisant partie des céramiques techniques. Ils sont caractérisés par un ensemble de fibres céramiques incorporées dans une matrice également céramique. Fibres et matrice peuvent en principe être constituées de toutes les céramiques connues, en y incluant même le carbone.
FibréEn mathématiques, un espace fibré est, intuitivement, un espace topologique qui est localement le produit de deux espaces — appelés la base et la fibre — mais en général pas globalement. Par exemple, le ruban de Möbius est un fibré de base un cercle et de fibre un segment de droite : il ressemble localement au produit d'un cercle par un segment, mais pas globalement comme le cylindre Plus précisément, l'espace total du fibré est muni d'une projection continue sur la base, telle que la de chaque point soit homéomorphe à la fibre.
Section d'un fibréEn topologie, une section d'un fibré sur un espace topologique est une fonction continue telle que pour tout point de . Toute section est injective. Une section est une généralisation de la notion de graphe d'une fonction. Le graphe d'une fonction g : X → Y peut être identifié à une fonction prenant ses valeurs dans le produit cartésien E = X×Y de X et Y: Une section est une caractérisation abstraite de ce qu'est un graphe. Soit π : E → X la projection sur le premier facteur du produit cartésien: π(x,y) = x.
Fibré associéEn géométrie différentielle, un fibré associé est un fibré qui est induit par un -fibré principal et une action du groupe structurel sur un espace auxiliaire. Soient : un groupe de Lie ; une variété différentielle ; un -fibré principal sur ; l'action de groupe à droite de sur ; une action de groupe à gauche de sur une variété différentielle . Définition Le fibré associé à pour est le fibré où est défini par : où la relation d'équivalence est : Remarques Les fibres de sont de fibre type .
Fibré vectorielEn topologie différentielle, un fibré vectoriel est une construction géométrique ayant une parenté avec le produit cartésien, mais apportant une structure globale plus riche. Elle fait intervenir un espace topologique appelé base et un espace vectoriel modèle appelé fibre modèle. À chaque point de la base est associée une fibre copie de la fibre modèle, l'ensemble formant un nouvel espace topologique : l'espace total du fibré. Celui-ci admet localement la structure d'un produit cartésien de la base par la fibre modèle, mais peut avoir une topologie globale plus compliquée.
Fibre libériennevignette|redresse|Coupe transversale d'une tige de lin, montrant l'emplacement des tissus sous-jacents. Ep = épiderme ; C = cortex ; BF = fibres libériennes ; P = phloème ; X = xylème ; Pi = moelle. vignette|redresse|Femme du sud de la Norvège tissant avec des fibres libériennes de tilleul. vignette|redresse|Masque Ndimbu du Tanganyika, en bois, cheveux et fibres libériennes. Les fibres libériennes (également appelées fibres de phloème) sont des fibres végétales extraites du phloème (l'écorce interne ou liber) entourant la tige de certaines plantes dicotylédones.
Polymer matrix compositeIn materials science, a polymer matrix composite (PMC) is a composite material composed of a variety of short or continuous fibers bound together by a matrix of organic polymers. PMCs are designed to transfer loads between fibers of a matrix. Some of the advantages with PMCs include their light weight, high resistance to abrasion and corrosion, and high stiffness and strength along the direction of their reinforcements. The function of the matrix in PMCs is to bond the fibers together and transfer loads between them.
Fibré principalEn topologie, de manière informelle, un fibré principal sur un espace topologique X est un espace ressemblant localement à un produit de X par un groupe topologique. En particulier, un fibré principal est un espace fibré, mais c'est bien plus encore. Il est muni d'un groupe, le groupe structural, décrivant la manière dont les trivialisations locales se recollent entre elles. La théorie des fibrés principaux recouvre la théorie des fibrés vectoriels, de leurs orientations, de leurs structures riemanniennes, de leurs structures symplectiques, etc.
Métrique pseudo-riemannienneEn mathématiques et en physique, une métrique pseudo-riemannienne est une extension de la métrique riemannienne dans laquelle un certain nombre d'axes de l'espace qu'elle décrit ont des normes négatives. Si la métrique pseudo-riemanienne est en réalité un champ tensoriel, et donc varie d'un point à un autre, sa signature (le nombre d'axes dont les normes sont positives et le nombre d'axes dont les normes sont négatives), elle, ne peut jamais changer pour un même espace. Variété pseudo-riemannienne Catégori
Composite à matrice métalliqueUn composite à matrice métallique (CMM) est un matériau réunissant deux éléments : une matrice métallique, par exemple en aluminium, magnésium, zinc ; un renfort métallique ou céramique, tel que des fils d’acier, particules de carbure de silicium (SiC), fibres de carbone, alumine. Les composites à matrice métallique ayant de la céramique comme renfort sont appelés « cermets ». Le sigle MMC signifie « Metal Matrix Composite », c'est-à-dire « composite à matrice métallique » ou CMM en français.