Automorphism groupIn mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X. Especially in geometric contexts, an automorphism group is also called a symmetry group.
Pion (particule)Un pion ou méson pi est une des trois particules : π, π+ ou π−. Ce sont les particules les plus légères de la famille des mésons. Elles jouent un rôle important dans l'explication des propriétés à basse énergie de la force nucléaire forte ; notamment, la cohésion du noyau atomique est assurée par l'échange de pions entre les nucléons (protons et neutrons). Le substantif masculin pion (prononcé en français standard) est composé de pi, transcription de la lettre grecque π, et de -on, tiré de électron.
Truly neutral particleIn particle physics, a truly neutral particle is a subatomic particle that is its own antiparticle. In other words, it remains itself under the charge conjugation, which replaces particles with their corresponding antiparticles. All charges of a truly neutral particle must be equal to zero. This requires particles to not only be electrically neutral, but also requires that all of their other charges (such as the colour charge) be neutral.
AutomorphismeUn automorphisme est un isomorphisme d'un objet mathématique X dans lui-même. Le plus souvent, c'est une bijection de X dans X qui préserve la « structure » de X. On peut le voir comme une symétrie de X. Les automorphismes de X forment un groupe. La définition abstraite d'un automorphisme est la suivante : c'est un endomorphisme qui est en même temps un isomorphisme. Autrement dit, c'est un morphisme d'un objet X d'une catégorie donnée dans lui-même, qui est également un isomorphisme.
Sous-groupe normalEn théorie des groupes, un sous-groupe normal (également appelé sous-groupe distingué ou sous-groupe invariantLien web|langue=fr|titre=Introduction à la théorie des groupes et de leurs représentations|auteur=Jean-Bernard Zuber|url=) H d'un groupe G est un sous-groupe globalement stable par l'action de G sur lui-même par conjugaison. Les sous-groupes normaux interviennent naturellement dans la définition du quotient d'un groupe. Les sous-groupes normaux de G sont exactement les noyaux des morphismes définis sur G.
Oscillation des neutrinosvignette|Phénomène périodique L'oscillation du neutrino est un phénomène de la mécanique quantique dans lequel un neutrino créé avec une certaine saveur leptonique (neutrino électronique, muonique ou tauique) peut être mesuré plus tard ayant une saveur différente. La probabilité d'avoir une valeur donnée de cette propriété varie de façon périodique alors que la particule se propage. L'oscillation du neutrino est d'intérêt tant théorique qu'expérimental, puisque l'observation de ce phénomène implique la non-nullité de la masse de la particule, .
Automorphisms of the symmetric and alternating groupsIn group theory, a branch of mathematics, the automorphisms and outer automorphisms of the symmetric groups and alternating groups are both standard examples of these automorphisms, and objects of study in their own right, particularly the exceptional outer automorphism of S6, the symmetric group on 6 elements. , and thus . Formally, is complete and the natural map is an isomorphism. , and the outer automorphism is conjugation by an odd permutation. Indeed, the natural maps are isomorphisms.
Torsion-free abelian groupIn mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only element with finite order. While finitely generated abelian groups are completely classified, not much is known about infinitely generated abelian groups, even in the torsion-free countable case. Abelian group An abelian group is said to be torsion-free if no element other than the identity is of finite order.
LeptogénèseEn cosmologie, la leptogénèse est la formation des leptons dans l'Univers primitif. Les processus responsables de cette leptogénèse, encore mal compris, ont notamment produit une asymétrie entre les leptons et les antileptons peu après le Big Bang, entraînant la domination actuelle des leptons sur les antileptons.
Groupe algébriqueEn géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .