Plan (mathématiques)En géométrie classique, un plan est une surface plate illimitée, munie de notions d’alignement, d’angle et de distance, et dans laquelle peuvent s’inscrire des points, droites, cercles et autres figures planes usuelles. Il sert ainsi de cadre à la géométrie plane, et en particulier à la trigonométrie lorsqu’il est muni d’une orientation, et permet de représenter l’ensemble des nombres complexes. Un plan peut aussi se concevoir comme partie d’un espace tridimensionnel euclidien, dans lequel il permet de définir les sections planes d’un solide ou d’une autre surface.
Pollution sonorethumb|Selon G. Dutilleux (2012), (ici, à titre d'exemple : vue de la circulation automobile urbaine à Bangkok, source majeure de nuisances sonores. thumb|L'échangeur de Daussoulx en Belgique ; autre exemple de source de nuisances sonores. La notion de pollution sonore regroupe généralement des nuisances sonores, et des pollutions induites par le son devenu dans certaines circonstances un « altéragène physique » pour l'être humain ou les écosystèmes.
Distance (mathématiques)En mathématiques, une distance est une application qui formalise l'idée intuitive de distance, c'est-à-dire la longueur qui sépare deux points. C'est par l'analyse des principales propriétés de la distance usuelle que Fréchet introduit la notion d'espace métrique, développée ensuite par Hausdorff. Elle introduit un langage géométrique dans de nombreuses questions d'analyse et de théorie des nombres.
Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
Rapport signal sur bruitEn électronique, le rapport signal sur bruit (SNR, ) est le rapport des puissances entre la partie du signal qui représente une information et le reste, qui constitue un bruit de fond. Il est un indicateur de la qualité de la transmission d'une information. L'expression d'un rapport signal sur bruit se fonde implicitement sur le principe de superposition, qui pose que le signal total est la somme de ces composantes. Cette condition n'est vraie que si le phénomène concerné est linéaire.
Bruit au travailLe bruit est une sensation auditive désagréable ou gênante. Au-delà d’un certain seuil, quand le niveau sonore est très élevé, tous les sons sont dangereux pour la santé. Au travail, le bruit peut avoir de multiples origines : machines, outils, véhicules... Le niveau du bruit se mesure en décibels . Selon l’Institut National de Recherche et de Sécurité, pour une journée de travail de 8 heures, l’ouïe est en danger à partir de 80 dB(A).
Réglementation sur les nuisances sonoresLa réglémentation sur les nuisances sonores comprend des lois ou directives liées à l'émission de bruit, établies par des niveaux de gouvernements nationaux, d'états ou provinciaux et municipaux. Après le grand tournant de l'acte américain de contrôle des nuisances sonores, d'autres gouvernements locaux et d'état établissent d'autres règles. Une réglementation des nuisances sonores restreint la quantité de bruit, la durée du bruit et la source du bruit. Les restrictions sont généralement valables à certaines heures de la journée.
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Déterminant (mathématiques)vignette|L'aire du parallélogramme est la valeur absolue du déterminant de la matrice formée par les vecteurs correspondants aux côtés du parallélogramme. En mathématiques, le déterminant est une valeur qu'on peut associer aux matrices ou aux applications linéaires en dimension finie. Sur les exemples les plus simples, ceux de la géométrie euclidienne en dimension 2 ou 3, il s'interprète en termes d'aires ou de volumes, et son signe est relié à la notion d'orientation.
Woodbury matrix identityIn mathematics (specifically linear algebra), the Woodbury matrix identity, named after Max A. Woodbury, says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix. Alternative names for this formula are the matrix inversion lemma, Sherman–Morrison–Woodbury formula or just Woodbury formula. However, the identity appeared in several papers before the Woodbury report.