Espace colonne et espace des rangéesEn algèbre linéaire, lespace colonne (aussi appelé espace des colonnes ou ) d'une matrice A est l'espace engendré par toutes les combinaisons linéaires de ses vecteurs colonne. L'espace colonne d'une matrice est l'image de lapplication linéaire correspondante. Soit un corps. L'espace colonne d'une matrice de taille à éléments dans est un sous-espace vectoriel de . La dimension d'un espace colonne est appelé le rang d'une matrice et est au plus égal au minimum de et . Une définition des matrices sur un anneau est également possible.
Sous-espace vectorielEn algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.
Algorithme de LanczosEn algèbre linéaire, l’algorithme de Lanczos (ou méthode de Lanczos) est un algorithme itératif pour déterminer les valeurs et vecteurs propres d'une matrice carrée, ou la décomposition en valeurs singulières d'une matrice rectangulaire. Cet algorithme n'a pas de lien avec le fenêtrage de Lanczos (utilisé par exemple pour le redimensionnement d'images), si ce n'est que tous les deux tirent leur nom du même inventeur, le physicien et mathématicien hongrois Cornelius Lanczos.
Nonlinear dimensionality reductionNonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.
Décomposition de SchurEn algèbre linéaire, une décomposition de Schur (nommée après le mathématicien Issai Schur) d'une matrice carrée complexe M est une décomposition de la formeoù U est une matrice unitaire (U*U = I) et A une matrice triangulaire supérieure. On peut écrire la décomposition de Schur en termes d'applications linéaires : Dans le cas où est l'application nulle, l'énoncé est directement vérifié, on peut donc se contenter de traiter le cas où est différente de l'application nulle.
Base (chimie quantique)Une base en chimie quantique est un ensemble de fonctions utilisées afin de modéliser des orbitales moléculaires, qui sont développées comme combinaisons linéaires de telles fonctions avec des poids ou coefficients à déterminer. Ces fonctions sont habituellement des orbitales atomiques, car centrées sur les atomes, mais des fonctions centrées sur les liaisons ou les fonctions centrées des doublets non liants ont été utilisées comme l'ont été des paires de fonctions centrées sur les deux lobes d'une orbitale p.