Monoïde des tracesEn mathématiques et en informatique, une trace est un ensemble de mots, où certaines lettres peuvent commuter, et d'autres non. Le monoïde des traces ou monoïde partiellement commutatif libre est le monoïde quotient du monoïde libre par une relation de commutation de lettres. Le monoïde des traces est donc une structure qui se situe entre le monoïde libre et le monoïde commutatif libre. L'intérêt mathématique du monoïde des traces a été mis en évidence dans l'ouvrage fondateur .
Free monoidIn abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element. The free monoid on a set A is usually denoted A∗. The free semigroup on A is the subsemigroup of A∗ containing all elements except the empty string. It is usually denoted A+.
Théorie de la calculabilitéLa théorie de la calculabilité (appelée aussi parfois théorie de la récursion) est un domaine de la logique mathématique et de l'informatique théorique. La calculabilité (parfois appelée « computationnalité », de l'anglais computability) cherche d'une part à identifier la classe des fonctions qui peuvent être calculées à l'aide d'un algorithme et d'autre part à appliquer ces concepts à des questions fondamentales des mathématiques. Une bonne appréhension de ce qui est calculable et de ce qui ne l'est pas permet de voir les limites des problèmes que peuvent résoudre les ordinateurs.
Nombre p-adiquevignette|Les entiers 3-adiques, avec des représentations obtenues par dualité de Pontriaguine. En mathématiques, et plus particulièrement en théorie des nombres, pour un nombre premier fixé, les nombres p-adiques forment une extension particulière du corps des nombres rationnels, découverte par Kurt Hensel en 1897. Le corps commutatif des nombres -adiques peut être construit par complétion de , d'une façon analogue à la construction des nombres réels par les suites de Cauchy, mais pour une valeur absolue moins familière, nommée valeur absolue -adique.
Nombre réel calculablevignette|π est calculable avec un précision arbitraire alors que presque tous les nombres réels sont non calculables. En informatique et algorithmique, un nombre réel calculable est un réel pour lequel il existe un algorithme ou une machine de Turing permettant d'énumérer la suite de ses chiffres (éventuellement infinie), ou plus généralement des symboles de son écriture sous forme de chaîne de caractères. De manière plus générale, et équivalente, un nombre réel est calculable si on peut en calculer une approximation aussi précise que l'on veut, avec une précision connue.
Information sensibleUne information sensible est une information ou une connaissance qui, si elle est révélée au public, nuirait aux entités qu'elle concerne. La perte, l'utilisation à mauvais escient, la modification ou l'accès non autorisé à une information sensible peut affecter défavorablement la vie privée d'un individu, un échange commercial, ou même la sécurité d'une nation. L'impact est relatif au niveau, à la sensibilité et à la nature de l'information. Habilitation de sécurité en France Sécurité de l'information Inf
Loi des gaz parfaitsvignette|Isothermes d'un gaz parfait (diagramme (P,V,T)). La relation entre la pression P et le volume V est hyperbolique . En physique, et plus particulièrement en thermodynamique, la loi des gaz parfaits, ou équation des gaz parfaits, est l'équation d'état applicable aux gaz parfaits. Elle a été établie en 1834 par Émile Clapeyron par combinaison de plusieurs lois des gaz établies antérieurement. Cette équation s'écrit : avec : la pression (Pa) ; le volume du gaz (m3) ; la quantité de matière (mol) ; la constante universelle des gaz parfaits (≈ ) ; la température absolue (K).
Opération binaireLes opérations en codage binaire sont traitées à l'article Fonction logique. En mathématiques, une opération binaire est une opération à deux arguments ou opérandes. C'est le cas notamment des lois de composition interne sur un ensemble, telle que l'addition des entiers ou la composition de fonctions. Mais une opération partiellement définie comme la division ou la puissance peut également être considérée comme une opération binaire.
Entier sans facteur carrévignette|Les nombres qui n'ont pas été rayé sont tous les entiers sans facteur carré jusqu'à 120 En mathématiques et plus précisément en arithmétique, un entier sans facteur carré (souvent appelé, par tradition ou commodité quadratfrei ou squarefree) est un entier relatif qui n'est divisible par aucun carré parfait, excepté 1. Par exemple, 10 est sans facteur carré mais 18 ne l'est pas, puisqu'il est divisible par 9 = 3. Les dix plus petits nombres de la des entiers positifs sans facteur carré sont 1, 2, 3, 5, 6, 7, 10, 11, 13, 14.
PointwiseIn mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value of some function An important class of pointwise concepts are the pointwise operations, that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition. Important relations can also be defined pointwise.