Donnée aberrantevignette|Ce graphique permet de visualiser la répartition de doyens selon leur âge de décès et l'âge de décès moyen des doyens de leur époque. Le record de longévité de Jeanne Calment constitue une anomalie statistique qui continue d'intriguer les gérontologues. En statistique, une donnée aberrante (anglais outlier) est une valeur ou une observation qui est « distante » des autres observations effectuées sur le même phénomène, c'est-à-dire qu'elle contraste grandement avec les valeurs « normalement » mesurées.
Méthodes de Runge-KuttaLes méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles ont été nommées ainsi en l'honneur des mathématiciens Carl Runge et Martin Wilhelm Kutta, lesquels élaborèrent la méthode en 1901. Ces méthodes reposent sur le principe de l'itération, c'est-à-dire qu'une première estimation de la solution est utilisée pour calculer une seconde estimation, plus précise, et ainsi de suite. Considérons le problème suivant : que l'on va chercher à résoudre en un ensemble discret t < t < .
Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Robust regressionIn robust statistics, robust regression seeks to overcome some limitations of traditional regression analysis. A regression analysis models the relationship between one or more independent variables and a dependent variable. Standard types of regression, such as ordinary least squares, have favourable properties if their underlying assumptions are true, but can give misleading results otherwise (i.e. are not robust to assumption violations).
Fat-tailed distributionA fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed. Different research communities favor one or the other largely for historical reasons, and may have differences in the precise definition of either.
Loi de probabilité à queue lourdevignette|Long tail. Dans la théorie des probabilités, une loi de probabilité à queue lourde est une loi de probabilité dont les queues ne sont pas exponentiellement bornées, ce qui signifie qu'elles ont des queues plus « lourdes » que la loi exponentielle. Dans de nombreuses applications, c'est la queue droite de la distribution qui est intéressante, mais une distribution peut avoir une queue lourde à gauche, ou les deux queues peuvent être lourdes.
Loi de LévyEn théorie des probabilités et en statistique, la loi de Lévy, nommée d'après le mathématicien Paul Lévy, est une loi de probabilité continue. En physique, plus précisément en spectroscopie, elle porte le nom de profil de van der Waals et décrit le profil de certaines raies spectrales. Cette loi dépend de deux paramètres : un paramètre de position qui décale le support , et un paramètre d'échelle . Si X suit une loi de Lévy, on notera : .
Quartilevignette|Histogramme avec représentation visuelle des quartiles. En statistique descriptive, un quartile est chacune des trois valeurs qui divisent les données triées en quatre parts égales, de sorte que chaque partie représente 1/4 de l'échantillon de population. Le quartile fait partie des quantiles.
Boîte à moustachesDans les représentations graphiques de données statistiques, la boîte à moustaches, aussi appelée diagramme en boîte, boîtes à pattes, boîte de Tukey (en anglais, box-and-whisker plot, plus simplement box plot) est un moyen rapide de figurer le profil essentiel d'une série statistique quantitative. Elle a été inventée en 1977 par John Tukey, mais peut faire l'objet de certains aménagements selon les utilisateurs. La boîte à moustaches résume seulement quelques indicateurs de position du caractère étudié (médiane, quartiles, minimum, maximum ou déciles).
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.