Jauge de LorenzLa jauge de Lorenz est une condition que l'on peut introduire en électromagnétisme ; cette condition tient son nom du physicien danois Ludvig Lorenz (elle est souvent attribuée au physicien Hendrik Lorentz, probablement en raison de son invariance sous les transformations de Lorentz). L'introduction de la condition impose un lien entre le potentiel scalaire et le potentiel vecteur associés aux champs électrique et magnétique ; les composantes du potentiel vecteur et le potentiel scalaire forment alors le quadrivecteur potentiel.
Diagramme de Minkowskivignette|droite|Diagramme de Minkowski représentant un événement E avec ses coordonnées d'espace-temps (x,ct) dans un référentiel R, et celles (x', ct') dans un référentiel R' en déplacement par rapport au premier à la vitesse v ; ainsi qu'un des axes du cône de lumière, en rouge. L'unité des graduations sur les axes de R' sont notées 1' sur chacun. Le diagramme de Minkowski est une représentation de l'espace-temps développée en 1908 par Hermann Minkowski, permettant une visualisation des propriétés dans la théorie de la relativité restreinte.
Théorie de jauge supersymétriqueEn théorie quantique des champs, une théorie de jauge supersymétrique est une théorie possédant une ou plusieurs supersymétries (dans le cas de plusieurs supersymétries on parle de supersymétrie étendue) et incorporant également une symétrie de jauge tout comme les théories de jauge ordinaires non-supersymétriques. Les théories de jauge contenant toujours un ou plusieurs champs de jauge qui sont des champs de spin 1, la présence de la supersymétrie nécessite qu'un tel champ vectoriel soit accompagné d'un partenaire fermionique de spin 1/2 appelé jaugino.
SymétrieLa symétrie est une propriété d'un système : c'est lorsque deux parties sont semblables. L'exemple le plus connu est la symétrie en géométrie. De manière générale, un système est symétrique quand on peut permuter ses éléments en laissant sa forme inchangée. Le concept d'automorphisme permet de préciser cette définition. Un papillon, par exemple, est symétrique parce qu'on peut permuter tous les points de la moitié gauche de son corps avec tous les points de la moitié droite sans que son apparence soit modifiée.
Physique au-delà du modèle standardLa physique au-delà du modèle standard se rapporte aux développements théoriques de la physique des particules nécessaires pour expliquer les défaillances du modèle standard, telles que l'origine de la masse, le problème de la violation CP de l'interaction forte, les oscillations des neutrinos, l'asymétrie matière-antimatière, et la nature de la matière noire et de l'énergie noire.
Chirality (physics)A chiral phenomenon is one that is not identical to its (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Helicity (particle physics) The helicity of a particle is positive (“right-handed”) if the direction of its spin is the same as the direction of its motion.
Asymptotic safety in quantum gravityAsymptotic safety (sometimes also referred to as nonperturbative renormalizability) is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences.
Boucle de WilsonEn théorie de jauge, une boucle de Wilson (nommée d'après Kenneth G. Wilson) est une observable invariante de jauge obtenue à partir de l'holonomie de la connexion de jauge autour d'une boucle donnée. Dans les théories classiques, l'ensemble de toutes les boucles de Wilson contient assez d'information pour reconstruire la connexion de jauge, à une transformation de jauge près.
Chiral modelIn nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N) , where N is the number of quark flavors.
Covariance de Lorentzvignette|Illustration de l'espace-temps. En relativité restreinte, une quantité est dite covariante de Lorentz lorsque ses composantes forment une représentation du groupe de Lorentz. Par exemple le temps propre se transforme de façon particulièrement simple puisqu'il est invariant sous transformation de Lorentz, on dit que c'est une quantité scalaire et on parle de scalaire de Lorentz. La représentation associée du groupe de Lorentz est la représentation triviale.